![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrpii | Structured version Visualization version GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 23-Feb-2008.) |
Ref | Expression |
---|---|
elrpi.1 | ⊢ 𝐴 ∈ ℝ |
elrpi.2 | ⊢ 0 < 𝐴 |
Ref | Expression |
---|---|
elrpii | ⊢ 𝐴 ∈ ℝ+ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrpi.1 | . 2 ⊢ 𝐴 ∈ ℝ | |
2 | elrpi.2 | . 2 ⊢ 0 < 𝐴 | |
3 | elrp 11948 | . 2 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) | |
4 | 1, 2, 3 | mpbir2an 993 | 1 ⊢ 𝐴 ∈ ℝ+ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2103 class class class wbr 4760 ℝcr 10048 0cc0 10049 < clt 10187 ℝ+crp 11946 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1599 df-ex 1818 df-nf 1823 df-sb 2011 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-rab 3023 df-v 3306 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-nul 4024 df-if 4195 df-sn 4286 df-pr 4288 df-op 4292 df-br 4761 df-rp 11947 |
This theorem is referenced by: 1rp 11950 2rp 11951 3rp 11952 iexpcyc 13084 discr 13116 sqrlem7 14109 caurcvgr 14524 epr 15056 aaliou3lem1 24217 aaliou3lem2 24218 aaliou3lem3 24219 pirp 24333 pige3 24389 cosordlem 24397 efif1olem2 24409 cxpsqrtlem 24568 log2cnv 24791 cht3 25019 chtublem 25056 chtub 25057 bposlem6 25134 lgsdir2lem1 25170 lgsdir2lem4 25173 lgsdir2lem5 25174 2sqlem11 25274 chebbnd1lem3 25280 chebbnd1 25281 chto1ub 25285 dchrvmasumiflem1 25310 pntlemg 25407 pntlemr 25411 pntlemf 25414 minvecolem3 27962 dp2lt10 29821 ballotlem2 30780 pigt3 33634 cntotbnd 33827 heiborlem5 33846 heiborlem7 33848 isosctrlem1ALT 39586 sineq0ALT 39589 limclner 40303 stoweidlem5 40642 stoweidlem28 40665 stoweidlem59 40696 stoweid 40700 stirlinglem12 40722 fourierswlem 40867 fouriersw 40868 |
Copyright terms: Public domain | W3C validator |