![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrp | Structured version Visualization version GIF version |
Description: Membership in the set of positive reals. (Contributed by NM, 27-Oct-2007.) |
Ref | Expression |
---|---|
elrp | ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 4689 | . 2 ⊢ (𝑥 = 𝐴 → (0 < 𝑥 ↔ 0 < 𝐴)) | |
2 | df-rp 11871 | . 2 ⊢ ℝ+ = {𝑥 ∈ ℝ ∣ 0 < 𝑥} | |
3 | 1, 2 | elrab2 3399 | 1 ⊢ (𝐴 ∈ ℝ+ ↔ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∈ wcel 2030 class class class wbr 4685 ℝcr 9973 0cc0 9974 < clt 10112 ℝ+crp 11870 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-rab 2950 df-v 3233 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-rp 11871 |
This theorem is referenced by: elrpii 11873 nnrp 11880 rpgt0 11882 rpregt0 11884 ralrp 11890 rexrp 11891 rpaddcl 11892 rpmulcl 11893 rpdivcl 11894 rpgecl 11897 rphalflt 11898 ge0p1rp 11900 rpneg 11901 negelrp 11902 ltsubrp 11904 ltaddrp 11905 difrp 11906 elrpd 11907 infmrp1 12212 iccdil 12348 icccntr 12350 1mod 12742 expgt0 12933 resqrex 14035 sqrtdiv 14050 sqrtneglem 14051 mulcn2 14370 ef01bndlem 14958 sinltx 14963 met1stc 22373 met2ndci 22374 bcthlem4 23170 itg2mulc 23559 dvferm1 23793 dvne0 23819 reeff1o 24246 ellogdm 24430 cxpge0 24474 cxple2a 24490 cxpcn3lem 24533 cxpaddlelem 24537 cxpaddle 24538 atanbnd 24698 rlimcnp 24737 amgm 24762 chtub 24982 chebbnd1 25206 chto1ub 25210 pntlem3 25343 blocni 27788 dfrp2 29660 rpdp2cl 29717 dp2ltc 29722 dplti 29741 dpgti 29742 dpexpp1 29744 dpmul4 29750 fdvposlt 30805 hgt750lem 30857 unbdqndv2lem2 32626 heiborlem8 33747 wallispilem4 40603 perfectALTVlem2 41956 regt1loggt0 42655 |
Copyright terms: Public domain | W3C validator |