![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrnmpti | Structured version Visualization version GIF version |
Description: Membership in the range of a function. (Contributed by NM, 30-Aug-2004.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
rnmpt.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
elrnmpti.2 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elrnmpti | ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrnmpti.2 | . . 3 ⊢ 𝐵 ∈ V | |
2 | 1 | rgenw 3062 | . 2 ⊢ ∀𝑥 ∈ 𝐴 𝐵 ∈ V |
3 | rnmpt.1 | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
4 | 3 | elrnmptg 5530 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ V → (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵)) |
5 | 2, 4 | ax-mp 5 | 1 ⊢ (𝐶 ∈ ran 𝐹 ↔ ∃𝑥 ∈ 𝐴 𝐶 = 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 Vcvv 3340 ↦ cmpt 4881 ran crn 5267 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-mpt 4882 df-cnv 5274 df-dm 5276 df-rn 5277 |
This theorem is referenced by: fliftel 6722 oarec 7811 unfilem1 8389 pwfilem 8425 elrest 16290 psgneldm2 18124 psgnfitr 18137 iscyggen2 18483 iscyg3 18488 cycsubgcyg 18502 eldprd 18603 leordtval2 21218 iocpnfordt 21221 icomnfordt 21222 lecldbas 21225 tsmsxplem1 22157 minveclem2 23397 lhop2 23977 taylthlem2 24327 fsumvma 25137 dchrptlem2 25189 2sqlem1 25341 dchrisum0fno1 25399 minvecolem2 28040 gsumesum 30430 esumlub 30431 esumcst 30434 esumpcvgval 30449 esumgect 30461 esum2d 30464 sigapildsys 30534 sxbrsigalem2 30657 omssubaddlem 30670 omssubadd 30671 eulerpartgbij 30743 actfunsnf1o 30991 actfunsnrndisj 30992 reprsuc 31002 breprexplema 31017 bnj1366 31207 msubco 31735 msubvrs 31764 fin2so 33709 poimirlem17 33739 poimirlem20 33742 cntotbnd 33908 islsat 34781 |
Copyright terms: Public domain | W3C validator |