![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrn3 | Structured version Visualization version GIF version |
Description: Quantifier-free definition of membership in a range. (Contributed by Scott Fenton, 21-Jan-2017.) |
Ref | Expression |
---|---|
elrn3 | ⊢ (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rn 5277 | . . 3 ⊢ ran 𝐵 = dom ◡𝐵 | |
2 | 1 | eleq2i 2831 | . 2 ⊢ (𝐴 ∈ ran 𝐵 ↔ 𝐴 ∈ dom ◡𝐵) |
3 | eldm3 31979 | . 2 ⊢ (𝐴 ∈ dom ◡𝐵 ↔ (◡𝐵 ↾ {𝐴}) ≠ ∅) | |
4 | cnvxp 5709 | . . . . . . 7 ⊢ ◡(V × {𝐴}) = ({𝐴} × V) | |
5 | 4 | ineq2i 3954 | . . . . . 6 ⊢ (◡𝐵 ∩ ◡(V × {𝐴})) = (◡𝐵 ∩ ({𝐴} × V)) |
6 | cnvin 5698 | . . . . . 6 ⊢ ◡(𝐵 ∩ (V × {𝐴})) = (◡𝐵 ∩ ◡(V × {𝐴})) | |
7 | df-res 5278 | . . . . . 6 ⊢ (◡𝐵 ↾ {𝐴}) = (◡𝐵 ∩ ({𝐴} × V)) | |
8 | 5, 6, 7 | 3eqtr4ri 2793 | . . . . 5 ⊢ (◡𝐵 ↾ {𝐴}) = ◡(𝐵 ∩ (V × {𝐴})) |
9 | 8 | eqeq1i 2765 | . . . 4 ⊢ ((◡𝐵 ↾ {𝐴}) = ∅ ↔ ◡(𝐵 ∩ (V × {𝐴})) = ∅) |
10 | inss2 3977 | . . . . . 6 ⊢ (𝐵 ∩ (V × {𝐴})) ⊆ (V × {𝐴}) | |
11 | relxp 5283 | . . . . . 6 ⊢ Rel (V × {𝐴}) | |
12 | relss 5363 | . . . . . 6 ⊢ ((𝐵 ∩ (V × {𝐴})) ⊆ (V × {𝐴}) → (Rel (V × {𝐴}) → Rel (𝐵 ∩ (V × {𝐴})))) | |
13 | 10, 11, 12 | mp2 9 | . . . . 5 ⊢ Rel (𝐵 ∩ (V × {𝐴})) |
14 | cnveq0 5749 | . . . . 5 ⊢ (Rel (𝐵 ∩ (V × {𝐴})) → ((𝐵 ∩ (V × {𝐴})) = ∅ ↔ ◡(𝐵 ∩ (V × {𝐴})) = ∅)) | |
15 | 13, 14 | ax-mp 5 | . . . 4 ⊢ ((𝐵 ∩ (V × {𝐴})) = ∅ ↔ ◡(𝐵 ∩ (V × {𝐴})) = ∅) |
16 | 9, 15 | bitr4i 267 | . . 3 ⊢ ((◡𝐵 ↾ {𝐴}) = ∅ ↔ (𝐵 ∩ (V × {𝐴})) = ∅) |
17 | 16 | necon3bii 2984 | . 2 ⊢ ((◡𝐵 ↾ {𝐴}) ≠ ∅ ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅) |
18 | 2, 3, 17 | 3bitri 286 | 1 ⊢ (𝐴 ∈ ran 𝐵 ↔ (𝐵 ∩ (V × {𝐴})) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 Vcvv 3340 ∩ cin 3714 ⊆ wss 3715 ∅c0 4058 {csn 4321 × cxp 5264 ◡ccnv 5265 dom cdm 5266 ran crn 5267 ↾ cres 5268 Rel wrel 5271 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-br 4805 df-opab 4865 df-xp 5272 df-rel 5273 df-cnv 5274 df-dm 5276 df-rn 5277 df-res 5278 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |