Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elrhmunit Structured version   Visualization version   GIF version

Theorem elrhmunit 30154
 Description: Ring homomorphisms preserve unit elements. (Contributed by Thierry Arnoux, 23-Oct-2017.)
Assertion
Ref Expression
elrhmunit ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))

Proof of Theorem elrhmunit
StepHypRef Expression
1 simpl 468 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ (𝑅 RingHom 𝑆))
2 eqid 2770 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
3 eqid 2770 . . . . . 6 (Unit‘𝑅) = (Unit‘𝑅)
42, 3unitss 18867 . . . . 5 (Unit‘𝑅) ⊆ (Base‘𝑅)
5 simpr 471 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Unit‘𝑅))
64, 5sseldi 3748 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴 ∈ (Base‘𝑅))
7 rhmrcl1 18928 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝑅 ∈ Ring)
8 eqid 2770 . . . . . 6 (1r𝑅) = (1r𝑅)
92, 8ringidcl 18775 . . . . 5 (𝑅 ∈ Ring → (1r𝑅) ∈ (Base‘𝑅))
101, 7, 93syl 18 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (1r𝑅) ∈ (Base‘𝑅))
11 eqid 2770 . . . . . . 7 (∥r𝑅) = (∥r𝑅)
12 eqid 2770 . . . . . . 7 (oppr𝑅) = (oppr𝑅)
13 eqid 2770 . . . . . . 7 (∥r‘(oppr𝑅)) = (∥r‘(oppr𝑅))
143, 8, 11, 12, 13isunit 18864 . . . . . 6 (𝐴 ∈ (Unit‘𝑅) ↔ (𝐴(∥r𝑅)(1r𝑅) ∧ 𝐴(∥r‘(oppr𝑅))(1r𝑅)))
155, 14sylib 208 . . . . 5 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐴(∥r𝑅)(1r𝑅) ∧ 𝐴(∥r‘(oppr𝑅))(1r𝑅)))
1615simpld 476 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴(∥r𝑅)(1r𝑅))
17 eqid 2770 . . . . 5 (∥r𝑆) = (∥r𝑆)
182, 11, 17rhmdvdsr 30152 . . . 4 (((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Base‘𝑅) ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ 𝐴(∥r𝑅)(1r𝑅)) → (𝐹𝐴)(∥r𝑆)(𝐹‘(1r𝑅)))
191, 6, 10, 16, 18syl31anc 1478 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴)(∥r𝑆)(𝐹‘(1r𝑅)))
20 eqid 2770 . . . . . 6 (1r𝑆) = (1r𝑆)
218, 20rhm1 18939 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → (𝐹‘(1r𝑅)) = (1r𝑆))
2221breq2d 4796 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹𝐴)(∥r𝑆)(𝐹‘(1r𝑅)) ↔ (𝐹𝐴)(∥r𝑆)(1r𝑆)))
2322adantr 466 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹𝐴)(∥r𝑆)(𝐹‘(1r𝑅)) ↔ (𝐹𝐴)(∥r𝑆)(1r𝑆)))
2419, 23mpbid 222 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴)(∥r𝑆)(1r𝑆))
25 rhmopp 30153 . . . . 5 (𝐹 ∈ (𝑅 RingHom 𝑆) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
2625adantr 466 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)))
2715simprd 477 . . . 4 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → 𝐴(∥r‘(oppr𝑅))(1r𝑅))
2812, 2opprbas 18836 . . . . 5 (Base‘𝑅) = (Base‘(oppr𝑅))
29 eqid 2770 . . . . 5 (∥r‘(oppr𝑆)) = (∥r‘(oppr𝑆))
3028, 13, 29rhmdvdsr 30152 . . . 4 (((𝐹 ∈ ((oppr𝑅) RingHom (oppr𝑆)) ∧ 𝐴 ∈ (Base‘𝑅) ∧ (1r𝑅) ∈ (Base‘𝑅)) ∧ 𝐴(∥r‘(oppr𝑅))(1r𝑅)) → (𝐹𝐴)(∥r‘(oppr𝑆))(𝐹‘(1r𝑅)))
3126, 6, 10, 27, 30syl31anc 1478 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴)(∥r‘(oppr𝑆))(𝐹‘(1r𝑅)))
3221breq2d 4796 . . . 4 (𝐹 ∈ (𝑅 RingHom 𝑆) → ((𝐹𝐴)(∥r‘(oppr𝑆))(𝐹‘(1r𝑅)) ↔ (𝐹𝐴)(∥r‘(oppr𝑆))(1r𝑆)))
3332adantr 466 . . 3 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → ((𝐹𝐴)(∥r‘(oppr𝑆))(𝐹‘(1r𝑅)) ↔ (𝐹𝐴)(∥r‘(oppr𝑆))(1r𝑆)))
3431, 33mpbid 222 . 2 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴)(∥r‘(oppr𝑆))(1r𝑆))
35 eqid 2770 . . 3 (Unit‘𝑆) = (Unit‘𝑆)
36 eqid 2770 . . 3 (oppr𝑆) = (oppr𝑆)
3735, 20, 17, 36, 29isunit 18864 . 2 ((𝐹𝐴) ∈ (Unit‘𝑆) ↔ ((𝐹𝐴)(∥r𝑆)(1r𝑆) ∧ (𝐹𝐴)(∥r‘(oppr𝑆))(1r𝑆)))
3824, 34, 37sylanbrc 564 1 ((𝐹 ∈ (𝑅 RingHom 𝑆) ∧ 𝐴 ∈ (Unit‘𝑅)) → (𝐹𝐴) ∈ (Unit‘𝑆))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   ∈ wcel 2144   class class class wbr 4784  ‘cfv 6031  (class class class)co 6792  Basecbs 16063  1rcur 18708  Ringcrg 18754  opprcoppr 18829  ∥rcdsr 18845  Unitcui 18846   RingHom crh 18921 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-om 7212  df-tpos 7503  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-plusg 16161  df-mulr 16162  df-0g 16309  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-grp 17632  df-ghm 17865  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-rnghom 18924 This theorem is referenced by:  rhmunitinv  30156  qqhval2lem  30359
 Copyright terms: Public domain W3C validator