![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrestr | Structured version Visualization version GIF version |
Description: Sufficient condition for being an open set in a subspace. (Contributed by Jeff Hankins, 11-Jul-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
elrestr | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2760 | . . . 4 ⊢ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆) | |
2 | ineq1 3950 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ∩ 𝑆) = (𝐴 ∩ 𝑆)) | |
3 | 2 | eqeq2d 2770 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆) ↔ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆))) |
4 | 3 | rspcev 3449 | . . . 4 ⊢ ((𝐴 ∈ 𝐽 ∧ (𝐴 ∩ 𝑆) = (𝐴 ∩ 𝑆)) → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) |
5 | 1, 4 | mpan2 709 | . . 3 ⊢ (𝐴 ∈ 𝐽 → ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆)) |
6 | elrest 16290 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → ((𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆) ↔ ∃𝑥 ∈ 𝐽 (𝐴 ∩ 𝑆) = (𝑥 ∩ 𝑆))) | |
7 | 5, 6 | syl5ibr 236 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊) → (𝐴 ∈ 𝐽 → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆))) |
8 | 7 | 3impia 1110 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝑆 ∈ 𝑊 ∧ 𝐴 ∈ 𝐽) → (𝐴 ∩ 𝑆) ∈ (𝐽 ↾t 𝑆)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∃wrex 3051 ∩ cin 3714 (class class class)co 6813 ↾t crest 16283 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7114 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-rest 16285 |
This theorem is referenced by: firest 16295 restbas 21164 tgrest 21165 resttopon 21167 restcld 21178 restfpw 21185 neitr 21186 restntr 21188 ordtrest 21208 cnrest 21291 lmss 21304 connsubclo 21429 restnlly 21487 islly2 21489 cldllycmp 21500 lly1stc 21501 kgenss 21548 xkococnlem 21664 xkoinjcn 21692 qtoprest 21722 trfbas2 21848 trfil1 21891 trfil2 21892 fgtr 21895 trfg 21896 uzrest 21902 trufil 21915 flimrest 21988 cnextcn 22072 trust 22234 restutop 22242 trcfilu 22299 cfiluweak 22300 xrsmopn 22816 zdis 22820 xrge0tsms 22838 cnheibor 22955 cfilres 23294 lhop2 23977 psercn 24379 xrlimcnp 24894 xrge0tsmsd 30094 ordtrestNEW 30276 pnfneige0 30306 lmxrge0 30307 rrhre 30374 cvmscld 31562 cvmopnlem 31567 cvmliftmolem1 31570 poimirlem30 33752 subspopn 33861 iocopn 40249 icoopn 40254 limcresiooub 40377 limcresioolb 40378 fourierdlem32 40859 fourierdlem33 40860 fourierdlem48 40874 fourierdlem49 40875 |
Copyright terms: Public domain | W3C validator |