![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elrestd | Structured version Visualization version GIF version |
Description: A sufficient condition for being an open set of a subspace topology. (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
elrestd.1 | ⊢ (𝜑 → 𝐽 ∈ 𝑉) |
elrestd.2 | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
elrestd.3 | ⊢ (𝜑 → 𝑋 ∈ 𝐽) |
elrestd.4 | ⊢ 𝐴 = (𝑋 ∩ 𝐵) |
Ref | Expression |
---|---|
elrestd | ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrestd.3 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐽) | |
2 | elrestd.4 | . . . 4 ⊢ 𝐴 = (𝑋 ∩ 𝐵) | |
3 | 2 | a1i 11 | . . 3 ⊢ (𝜑 → 𝐴 = (𝑋 ∩ 𝐵)) |
4 | ineq1 3956 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑥 ∩ 𝐵) = (𝑋 ∩ 𝐵)) | |
5 | 4 | eqeq2d 2780 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝐴 = (𝑥 ∩ 𝐵) ↔ 𝐴 = (𝑋 ∩ 𝐵))) |
6 | 5 | rspcev 3458 | . . 3 ⊢ ((𝑋 ∈ 𝐽 ∧ 𝐴 = (𝑋 ∩ 𝐵)) → ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
7 | 1, 3, 6 | syl2anc 565 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
8 | elrestd.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ 𝑉) | |
9 | elrestd.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
10 | elrest 16295 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) | |
11 | 8, 9, 10 | syl2anc 565 | . 2 ⊢ (𝜑 → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
12 | 7, 11 | mpbird 247 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1630 ∈ wcel 2144 ∃wrex 3061 ∩ cin 3720 (class class class)co 6792 ↾t crest 16288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pr 5034 ax-un 7095 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-reu 3067 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-rest 16290 |
This theorem is referenced by: restuni3 39816 subsaliuncl 41087 subsalsal 41088 sssmf 41461 mbfresmf 41462 smfconst 41472 smflimlem1 41493 smfres 41511 smfco 41523 smfsuplem1 41531 |
Copyright terms: Public domain | W3C validator |