![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrest | Structured version Visualization version GIF version |
Description: The predicate "is an open set of a subspace topology". (Contributed by FL, 5-Jan-2009.) (Revised by Mario Carneiro, 15-Dec-2013.) |
Ref | Expression |
---|---|
elrest | ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | restval 16260 | . . 3 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐽 ↾t 𝐵) = ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵))) | |
2 | 1 | eleq2d 2813 | . 2 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ 𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)))) |
3 | eqid 2748 | . . 3 ⊢ (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) = (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) | |
4 | vex 3331 | . . . 4 ⊢ 𝑥 ∈ V | |
5 | 4 | inex1 4939 | . . 3 ⊢ (𝑥 ∩ 𝐵) ∈ V |
6 | 3, 5 | elrnmpti 5519 | . 2 ⊢ (𝐴 ∈ ran (𝑥 ∈ 𝐽 ↦ (𝑥 ∩ 𝐵)) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵)) |
7 | 2, 6 | syl6bb 276 | 1 ⊢ ((𝐽 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∈ (𝐽 ↾t 𝐵) ↔ ∃𝑥 ∈ 𝐽 𝐴 = (𝑥 ∩ 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ∃wrex 3039 ∩ cin 3702 ↦ cmpt 4869 ran crn 5255 (class class class)co 6801 ↾t crest 16254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pr 5043 ax-un 7102 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-ral 3043 df-rex 3044 df-reu 3045 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-rest 16256 |
This theorem is referenced by: elrestr 16262 restsspw 16265 firest 16266 restbas 21135 restsn 21147 restcld 21149 restopnb 21152 ssrest 21153 neitr 21157 restntr 21159 cnrest2 21263 cnpresti 21265 cnprest 21266 cnprest2 21267 lmss 21275 cmpsublem 21375 cmpsub 21376 connsuba 21396 1stcrest 21429 subislly 21457 cldllycmp 21471 txrest 21607 trfbas2 21819 trfbas 21820 trfil2 21863 flimrest 21959 fclsrest 22000 cnextcn 22043 tsmssubm 22118 trust 22205 restutop 22213 restutopopn 22214 trcfilu 22270 metrest 22501 xrtgioo 22781 xrge0tsms 22809 icoopnst 22910 iocopnst 22911 subopnmbl 23543 mbfimaopn2 23594 xrlimcnp 24865 xrge0tsmsd 30065 bj-restsn 33312 bj-rest10 33318 bj-restn0 33320 bj-restpw 33322 bj-rest0 33323 bj-restb 33324 bj-restuni 33327 bj-restreg 33329 ptrest 33690 poimirlem29 33720 elrestd 39759 restuni3 39769 icccncfext 40572 subsaliuncl 41048 subsalsal 41049 sssmf 41422 incsmf 41426 decsmf 41450 smflimlem6 41459 smfco 41484 smfpimcc 41489 |
Copyright terms: Public domain | W3C validator |