![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elrab3 | Structured version Visualization version GIF version |
Description: Membership in a restricted class abstraction, using implicit substitution. (Contributed by NM, 5-Oct-2006.) |
Ref | Expression |
---|---|
elrab.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
elrab3 | ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elrab.1 | . . 3 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | elrab 3505 | . 2 ⊢ (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ (𝐴 ∈ 𝐵 ∧ 𝜓)) |
3 | 2 | baib 982 | 1 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ {𝑥 ∈ 𝐵 ∣ 𝜑} ↔ 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1632 ∈ wcel 2140 {crab 3055 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-rab 3060 df-v 3343 |
This theorem is referenced by: unimax 4626 fnelfp 6607 fnelnfp 6609 fnse 7464 fin23lem30 9377 isf32lem5 9392 negn0 10672 ublbneg 11987 supminf 11989 sadval 15401 smuval 15426 dvdslcm 15534 dvdslcmf 15567 isprm2lem 15617 isacs1i 16540 isinito 16872 istermo 16873 subgacs 17851 nsgacs 17852 odngen 18213 lssacs 19190 mretopd 21119 txkgen 21678 xkoco1cn 21683 xkoco2cn 21684 xkoinjcn 21713 ordthmeolem 21827 shft2rab 23497 sca2rab 23501 lhop1lem 23996 ftalem5 25024 vmasum 25162 israg 25813 ebtwntg 26083 eupth2lem3lem3 27404 eupth2lem3lem4 27405 eupth2lem3lem6 27407 tgoldbachgt 31072 cvmliftmolem1 31592 neibastop3 32685 fdc 33873 pclvalN 35698 dvhb1dimN 36795 hdmaplkr 37726 diophren 37898 islmodfg 38160 sdrgacs 38292 fsovcnvlem 38828 ntrneiel 38900 radcnvrat 39034 supminfxr 40211 stoweidlem34 40773 |
Copyright terms: Public domain | W3C validator |