![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqsi | Structured version Visualization version GIF version |
Description: Membership in a quotient set. (Contributed by NM, 23-Jul-1995.) |
Ref | Expression |
---|---|
elqsi | ⊢ (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elqsg 7968 | . 2 ⊢ (𝐵 ∈ (𝐴 / 𝑅) → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅)) | |
2 | 1 | ibi 256 | 1 ⊢ (𝐵 ∈ (𝐴 / 𝑅) → ∃𝑥 ∈ 𝐴 𝐵 = [𝑥]𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1632 ∈ wcel 2140 ∃wrex 3052 [cec 7912 / cqs 7913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-rex 3057 df-v 3343 df-qs 7920 |
This theorem is referenced by: ectocld 7984 ecoptocl 8007 eroveu 8012 pstmxmet 30271 |
Copyright terms: Public domain | W3C validator |