Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elqsg Structured version   Visualization version   GIF version

Theorem elqsg 7954
 Description: Closed form of elqs 7955. (Contributed by Rodolfo Medina, 12-Oct-2010.)
Assertion
Ref Expression
elqsg (𝐵𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑅
Allowed substitution hint:   𝑉(𝑥)

Proof of Theorem elqsg
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 eqeq1 2775 . . 3 (𝑦 = 𝐵 → (𝑦 = [𝑥]𝑅𝐵 = [𝑥]𝑅))
21rexbidv 3200 . 2 (𝑦 = 𝐵 → (∃𝑥𝐴 𝑦 = [𝑥]𝑅 ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
3 df-qs 7906 . 2 (𝐴 / 𝑅) = {𝑦 ∣ ∃𝑥𝐴 𝑦 = [𝑥]𝑅}
42, 3elab2g 3504 1 (𝐵𝑉 → (𝐵 ∈ (𝐴 / 𝑅) ↔ ∃𝑥𝐴 𝐵 = [𝑥]𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   = wceq 1631   ∈ wcel 2145  ∃wrex 3062  [cec 7898   / cqs 7899 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rex 3067  df-v 3353  df-qs 7906 This theorem is referenced by:  elqs  7955  elqsi  7956  elqsecl  7957  ecelqsg  7958  elpi1  23064  eldmqsres  34394  prtlem11  34674
 Copyright terms: Public domain W3C validator