![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elqaa | Structured version Visualization version GIF version |
Description: The set of numbers generated by the roots of polynomials in the rational numbers is the same as the set of algebraic numbers, which by elaa 24290 are defined only in terms of polynomials over the integers. (Contributed by Mario Carneiro, 23-Jul-2014.) (Proof shortened by AV, 3-Oct-2020.) |
Ref | Expression |
---|---|
elqaa | ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elaa 24290 | . . 3 ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | |
2 | zssq 11997 | . . . . . 6 ⊢ ℤ ⊆ ℚ | |
3 | qsscn 12001 | . . . . . 6 ⊢ ℚ ⊆ ℂ | |
4 | plyss 24174 | . . . . . 6 ⊢ ((ℤ ⊆ ℚ ∧ ℚ ⊆ ℂ) → (Poly‘ℤ) ⊆ (Poly‘ℚ)) | |
5 | 2, 3, 4 | mp2an 664 | . . . . 5 ⊢ (Poly‘ℤ) ⊆ (Poly‘ℚ) |
6 | ssdif 3894 | . . . . 5 ⊢ ((Poly‘ℤ) ⊆ (Poly‘ℚ) → ((Poly‘ℤ) ∖ {0𝑝}) ⊆ ((Poly‘ℚ) ∖ {0𝑝})) | |
7 | ssrexv 3814 | . . . . 5 ⊢ (((Poly‘ℤ) ∖ {0𝑝}) ⊆ ((Poly‘ℚ) ∖ {0𝑝}) → (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) | |
8 | 5, 6, 7 | mp2b 10 | . . . 4 ⊢ (∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0 → ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0) |
9 | 8 | anim2i 595 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℤ) ∖ {0𝑝})(𝑓‘𝐴) = 0) → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) |
10 | 1, 9 | sylbi 207 | . 2 ⊢ (𝐴 ∈ 𝔸 → (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) |
11 | simpll 742 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓‘𝐴) = 0) → 𝐴 ∈ ℂ) | |
12 | simplr 744 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓‘𝐴) = 0) → 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) | |
13 | simpr 471 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓‘𝐴) = 0) → (𝑓‘𝐴) = 0) | |
14 | eqid 2770 | . . . 4 ⊢ (coeff‘𝑓) = (coeff‘𝑓) | |
15 | fveq2 6332 | . . . . . . . . . 10 ⊢ (𝑚 = 𝑘 → ((coeff‘𝑓)‘𝑚) = ((coeff‘𝑓)‘𝑘)) | |
16 | 15 | oveq1d 6807 | . . . . . . . . 9 ⊢ (𝑚 = 𝑘 → (((coeff‘𝑓)‘𝑚) · 𝑗) = (((coeff‘𝑓)‘𝑘) · 𝑗)) |
17 | 16 | eleq1d 2834 | . . . . . . . 8 ⊢ (𝑚 = 𝑘 → ((((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ ↔ (((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ)) |
18 | 17 | rabbidv 3338 | . . . . . . 7 ⊢ (𝑚 = 𝑘 → {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ} = {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ}) |
19 | oveq2 6800 | . . . . . . . . 9 ⊢ (𝑗 = 𝑛 → (((coeff‘𝑓)‘𝑘) · 𝑗) = (((coeff‘𝑓)‘𝑘) · 𝑛)) | |
20 | 19 | eleq1d 2834 | . . . . . . . 8 ⊢ (𝑗 = 𝑛 → ((((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ ↔ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ)) |
21 | 20 | cbvrabv 3348 | . . . . . . 7 ⊢ {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑗) ∈ ℤ} = {𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ} |
22 | 18, 21 | syl6eq 2820 | . . . . . 6 ⊢ (𝑚 = 𝑘 → {𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ} = {𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ}) |
23 | 22 | infeq1d 8538 | . . . . 5 ⊢ (𝑚 = 𝑘 → inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < ) = inf({𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) |
24 | 23 | cbvmptv 4882 | . . . 4 ⊢ (𝑚 ∈ ℕ0 ↦ inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < )) = (𝑘 ∈ ℕ0 ↦ inf({𝑛 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑘) · 𝑛) ∈ ℤ}, ℝ, < )) |
25 | eqid 2770 | . . . 4 ⊢ (seq0( · , (𝑚 ∈ ℕ0 ↦ inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < )))‘(deg‘𝑓)) = (seq0( · , (𝑚 ∈ ℕ0 ↦ inf({𝑗 ∈ ℕ ∣ (((coeff‘𝑓)‘𝑚) · 𝑗) ∈ ℤ}, ℝ, < )))‘(deg‘𝑓)) | |
26 | 11, 12, 13, 14, 24, 25 | elqaalem3 24295 | . . 3 ⊢ (((𝐴 ∈ ℂ ∧ 𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})) ∧ (𝑓‘𝐴) = 0) → 𝐴 ∈ 𝔸) |
27 | 26 | r19.29an 3224 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0) → 𝐴 ∈ 𝔸) |
28 | 10, 27 | impbii 199 | 1 ⊢ (𝐴 ∈ 𝔸 ↔ (𝐴 ∈ ℂ ∧ ∃𝑓 ∈ ((Poly‘ℚ) ∖ {0𝑝})(𝑓‘𝐴) = 0)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1630 ∈ wcel 2144 ∃wrex 3061 {crab 3064 ∖ cdif 3718 ⊆ wss 3721 {csn 4314 ↦ cmpt 4861 ‘cfv 6031 (class class class)co 6792 infcinf 8502 ℂcc 10135 ℝcr 10136 0cc0 10137 · cmul 10142 < clt 10275 ℕcn 11221 ℕ0cn0 11493 ℤcz 11578 ℚcq 11990 seqcseq 13007 0𝑝c0p 23655 Polycply 24159 coeffccoe 24161 degcdgr 24162 𝔸caa 24288 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-inf2 8701 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-addf 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-fal 1636 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-se 5209 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-isom 6040 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-of 7043 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-sup 8503 df-inf 8504 df-oi 8570 df-card 8964 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-n0 11494 df-z 11579 df-uz 11888 df-q 11991 df-rp 12035 df-fz 12533 df-fzo 12673 df-fl 12800 df-mod 12876 df-seq 13008 df-exp 13067 df-hash 13321 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-clim 14426 df-rlim 14427 df-sum 14624 df-0p 23656 df-ply 24163 df-coe 24165 df-dgr 24166 df-aa 24289 |
This theorem is referenced by: qaa 24297 dgraalem 38234 dgraaub 38237 aaitgo 38251 aacllem 43068 |
Copyright terms: Public domain | W3C validator |