![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpwi2 | Structured version Visualization version GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 3-Mar-2021.) |
Ref | Expression |
---|---|
elpwi2.1 | ⊢ 𝐵 ∈ 𝑉 |
elpwi2.2 | ⊢ 𝐴 ⊆ 𝐵 |
Ref | Expression |
---|---|
elpwi2 | ⊢ 𝐴 ∈ 𝒫 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi2.2 | . 2 ⊢ 𝐴 ⊆ 𝐵 | |
2 | elpwi2.1 | . . 3 ⊢ 𝐵 ∈ 𝑉 | |
3 | elpw2g 4968 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 2, 3 | ax-mp 5 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
5 | 1, 4 | mpbir 221 | 1 ⊢ 𝐴 ∈ 𝒫 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2131 ⊆ wss 3707 𝒫 cpw 4294 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-v 3334 df-in 3714 df-ss 3721 df-pw 4296 |
This theorem is referenced by: sprsymrelfolem1 42244 |
Copyright terms: Public domain | W3C validator |