![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpwd | Structured version Visualization version GIF version |
Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.) |
Ref | Expression |
---|---|
elpwd.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
elpwd.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
Ref | Expression |
---|---|
elpwd | ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwd.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
2 | elpwd.1 | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
3 | elpwg 4310 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 2, 3 | syl 17 | . 2 ⊢ (𝜑 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
5 | 1, 4 | mpbird 247 | 1 ⊢ (𝜑 → 𝐴 ∈ 𝒫 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2139 ⊆ wss 3715 𝒫 cpw 4302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-in 3722 df-ss 3729 df-pw 4304 |
This theorem is referenced by: reprval 30997 scutval 32217 bj-discrmoore 33372 dmvolss 40705 sge0xaddlem1 41153 ovnval2b 41272 ovnsubadd2lem 41365 vonvolmbllem 41380 vonvolmbl 41381 smfresal 41501 smfpimbor1lem1 41511 sprsymrelfvlem 42250 |
Copyright terms: Public domain | W3C validator |