Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpwd Structured version   Visualization version   GIF version

Theorem elpwd 4311
 Description: Membership in a power class. (Contributed by Glauco Siliprandi, 11-Oct-2020.)
Hypotheses
Ref Expression
elpwd.1 (𝜑𝐴𝑉)
elpwd.2 (𝜑𝐴𝐵)
Assertion
Ref Expression
elpwd (𝜑𝐴 ∈ 𝒫 𝐵)

Proof of Theorem elpwd
StepHypRef Expression
1 elpwd.2 . 2 (𝜑𝐴𝐵)
2 elpwd.1 . . 3 (𝜑𝐴𝑉)
3 elpwg 4310 . . 3 (𝐴𝑉 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
42, 3syl 17 . 2 (𝜑 → (𝐴 ∈ 𝒫 𝐵𝐴𝐵))
51, 4mpbird 247 1 (𝜑𝐴 ∈ 𝒫 𝐵)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∈ wcel 2139   ⊆ wss 3715  𝒫 cpw 4302 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-v 3342  df-in 3722  df-ss 3729  df-pw 4304 This theorem is referenced by:  reprval  30997  scutval  32217  bj-discrmoore  33372  dmvolss  40705  sge0xaddlem1  41153  ovnval2b  41272  ovnsubadd2lem  41365  vonvolmbllem  41380  vonvolmbl  41381  smfresal  41501  smfpimbor1lem1  41511  sprsymrelfvlem  42250
 Copyright terms: Public domain W3C validator