![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpw2g | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 7-Aug-2000.) |
Ref | Expression |
---|---|
elpw2g | ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwi 4312 | . 2 ⊢ (𝐴 ∈ 𝒫 𝐵 → 𝐴 ⊆ 𝐵) | |
2 | ssexg 4956 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ V) | |
3 | elpwg 4310 | . . . . 5 ⊢ (𝐴 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
4 | 3 | biimparc 505 | . . . 4 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐴 ∈ V) → 𝐴 ∈ 𝒫 𝐵) |
5 | 2, 4 | syldan 488 | . . 3 ⊢ ((𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉) → 𝐴 ∈ 𝒫 𝐵) |
6 | 5 | expcom 450 | . 2 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ⊆ 𝐵 → 𝐴 ∈ 𝒫 𝐵)) |
7 | 1, 6 | impbid2 216 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 𝒫 cpw 4302 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-v 3342 df-in 3722 df-ss 3729 df-pw 4304 |
This theorem is referenced by: elpw2 4977 elpwi2 4978 pwnss 4979 pw2f1olem 8229 fineqvlem 8339 elfir 8486 marypha1 8505 r1sscl 8821 tskwe 8966 dfac8alem 9042 acni2 9059 fin1ai 9307 fin2i 9309 fin23lem7 9330 fin23lem11 9331 isfin2-2 9333 fin23lem39 9364 isf34lem1 9386 isf34lem2 9387 isf34lem4 9391 isf34lem5 9392 fin1a2lem12 9425 canthnumlem 9662 canthp1lem2 9667 tsken 9768 tskss 9772 gruss 9810 ramub1lem1 15932 ismre 16452 mreintcl 16457 mremre 16466 submre 16467 mrcval 16472 mrccl 16473 mrcun 16484 ismri 16493 mreexexlem4d 16509 acsfiel 16516 isacs1i 16519 catcoppccl 16959 acsdrsel 17368 acsdrscl 17371 acsficl 17372 pmtrval 18071 pmtrrn 18077 opsrval 19676 istopg 20902 uniopn 20904 iscld 21033 ntrval 21042 clsval 21043 discld 21095 mretopd 21098 neival 21108 isnei 21109 lpval 21145 restdis 21184 ordtbaslem 21194 ordtuni 21196 cncls 21280 cndis 21297 tgcmp 21406 hauscmplem 21411 comppfsc 21537 elkgen 21541 xkoopn 21594 elqtop 21702 kqffn 21730 isfbas 21834 filss 21858 snfbas 21871 elfg 21876 fbasrn 21889 ufilss 21910 fixufil 21927 cfinufil 21933 ufinffr 21934 ufilen 21935 fin1aufil 21937 rnelfmlem 21957 flimclslem 21989 hauspwpwf1 21992 supnfcls 22025 flimfnfcls 22033 ptcmplem1 22057 tsmsfbas 22132 blfvalps 22389 blfps 22412 blf 22413 bcthlem5 23325 minveclem3b 23399 sigaclcuni 30490 sigaclcu2 30492 pwsiga 30502 erdsze2lem2 31493 cvmsval 31555 cvmsss2 31563 neibastop2lem 32661 tailf 32676 bj-ismoored 33368 fin2so 33709 sdclem1 33852 elrfirn 37760 elrfirn2 37761 istopclsd 37765 nacsfix 37777 dnnumch1 38116 |
Copyright terms: Public domain | W3C validator |