![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpw2 | Structured version Visualization version GIF version |
Description: Membership in a power class. Theorem 86 of [Suppes] p. 47. (Contributed by NM, 11-Oct-2007.) |
Ref | Expression |
---|---|
elpw2.1 | ⊢ 𝐵 ∈ V |
Ref | Expression |
---|---|
elpw2 | ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpw2.1 | . 2 ⊢ 𝐵 ∈ V | |
2 | elpw2g 4857 | . 2 ⊢ (𝐵 ∈ V → (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵)) | |
3 | 1, 2 | ax-mp 5 | 1 ⊢ (𝐴 ∈ 𝒫 𝐵 ↔ 𝐴 ⊆ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∈ wcel 2030 Vcvv 3231 ⊆ wss 3607 𝒫 cpw 4191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-in 3614 df-ss 3621 df-pw 4193 |
This theorem is referenced by: axpweq 4872 knatar 6647 canth 6648 dffi3 8378 marypha1lem 8380 r1pwss 8685 rankr1bg 8704 pwwf 8708 unwf 8711 rankval2 8719 uniwf 8720 rankpwi 8724 aceq3lem 8981 dfac2a 8990 dfac12lem2 9004 axdc3lem4 9313 axdc4lem 9315 axdclem 9379 grothpw 9686 uzf 11728 ixxf 12223 fzf 12368 incexclem 14612 rpnnen2lem1 14987 rpnnen2lem2 14988 bitsf 15196 sadfval 15221 smufval 15246 smupf 15247 vdwapf 15723 prdsval 16162 prdsds 16171 prdshom 16174 mreacs 16366 acsfn 16367 wunnat 16663 lubeldm 17028 lubval 17031 glbeldm 17041 glbval 17044 clatlem 17158 clatlubcl2 17160 clatglbcl2 17162 issubm 17394 issubg 17641 cntzval 17800 sylow1lem2 18060 lsmvalx 18100 pj1fval 18153 issubrg 18828 islss 18983 lspval 19023 lspcl 19024 islbs 19124 lbsextlem1 19206 lbsextlem3 19208 lbsextlem4 19209 sraval 19224 aspval 19376 ocvfval 20058 ocvval 20059 isobs 20112 islinds 20196 leordtval2 21064 cnpfval 21086 iscnp2 21091 uncmp 21254 cmpfi 21259 cmpfii 21260 2ndc1stc 21302 1stcrest 21304 islly2 21335 hausllycmp 21345 lly1stc 21347 1stckgenlem 21404 xkotf 21436 txlly 21487 txnlly 21488 tx1stc 21501 basqtop 21562 tgqtop 21563 alexsubALTlem3 21900 alexsubALTlem4 21901 alexsubALT 21902 sszcld 22667 cncfval 22738 cnllycmp 22802 bndth 22804 ishtpy 22818 ovolficcss 23284 ovolval 23288 ovolicc2 23336 ismbl 23340 mblsplit 23346 voliunlem3 23366 vitalilem4 23425 vitalilem5 23426 dvfval 23706 dvnfval 23730 cpnfval 23740 plyval 23994 dmarea 24729 wilthlem2 24840 issh 28193 ocval 28267 spanval 28320 hsupval 28321 sshjval 28337 sshjval3 28341 fpwrelmap 29636 sigagensiga 30332 dya2iocuni 30473 coinflippv 30673 ballotlemelo 30677 ballotlem2 30678 ballotth 30727 erdszelem1 31299 kur14lem9 31322 kur14 31324 cnllysconn 31353 elmpst 31559 mclsrcl 31584 mclsval 31586 icoreresf 33330 cover2 33638 cntotbnd 33725 heibor1lem 33738 heibor 33750 isidl 33943 igenval 33990 paddval 35402 pclvalN 35494 polvalN 35509 docavalN 36729 djavalN 36741 dicval 36782 dochval 36957 djhval 37004 lpolconN 37093 elmzpcl 37606 eldiophb 37637 rpnnen3 37916 islssfgi 37959 hbt 38017 elmnc 38023 itgoval 38048 itgocn 38051 rgspnval 38055 issubmgm 42114 elpglem2 42783 |
Copyright terms: Public domain | W3C validator |