MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elptr Structured version   Visualization version   GIF version

Theorem elptr 21603
Description: A basic open set in the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
elptr ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝐺𝑦) ∈ 𝐵)
Distinct variable groups:   𝑥,𝑔,𝑦,𝐺   𝑧,𝑔,𝐴,𝑥,𝑦   𝑔,𝐹,𝑥,𝑦,𝑧   𝑔,𝑉,𝑥,𝑦,𝑧   𝑦,𝑊
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)   𝐺(𝑧)   𝑊(𝑥,𝑧,𝑔)

Proof of Theorem elptr
Dummy variables 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2l 1239 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐺 Fn 𝐴)
2 simp1 1128 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐴𝑉)
3 fnex 6623 . . . 4 ((𝐺 Fn 𝐴𝐴𝑉) → 𝐺 ∈ V)
41, 2, 3syl2anc 693 . . 3 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → 𝐺 ∈ V)
5 simp2r 1240 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦))
6 difeq2 3870 . . . . . . 7 (𝑤 = 𝑊 → (𝐴𝑤) = (𝐴𝑊))
76raleqdv 3291 . . . . . 6 (𝑤 = 𝑊 → (∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦) ↔ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦)))
87rspcev 3457 . . . . 5 ((𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦)) → ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))
983ad2ant3 1127 . . . 4 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))
101, 5, 93jca 1120 . . 3 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦)))
11 fveq1 6330 . . . . . . . 8 ( = 𝐺 → (𝑦) = (𝐺𝑦))
1211eqcomd 2775 . . . . . . 7 ( = 𝐺 → (𝐺𝑦) = (𝑦))
1312ixpeq2dv 8076 . . . . . 6 ( = 𝐺X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦))
1413biantrud 530 . . . . 5 ( = 𝐺 → (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ↔ (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦))))
15 fneq1 6118 . . . . . 6 ( = 𝐺 → ( Fn 𝐴𝐺 Fn 𝐴))
1611eleq1d 2833 . . . . . . 7 ( = 𝐺 → ((𝑦) ∈ (𝐹𝑦) ↔ (𝐺𝑦) ∈ (𝐹𝑦)))
1716ralbidv 3133 . . . . . 6 ( = 𝐺 → (∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ↔ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)))
1811eqeq1d 2771 . . . . . . 7 ( = 𝐺 → ((𝑦) = (𝐹𝑦) ↔ (𝐺𝑦) = (𝐹𝑦)))
1918rexralbidv 3204 . . . . . 6 ( = 𝐺 → (∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦) ↔ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦)))
2015, 17, 193anbi123d 1545 . . . . 5 ( = 𝐺 → (( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ↔ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))))
2114, 20bitr3d 270 . . . 4 ( = 𝐺 → ((( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)) ↔ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦))))
2221spcegv 3442 . . 3 (𝐺 ∈ V → ((𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝐺𝑦) = (𝐹𝑦)) → ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦))))
234, 10, 22sylc 65 . 2 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)))
24 ptbas.1 . . 3 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
2524elpt 21602 . 2 (X𝑦𝐴 (𝐺𝑦) ∈ 𝐵 ↔ ∃(( Fn 𝐴 ∧ ∀𝑦𝐴 (𝑦) ∈ (𝐹𝑦) ∧ ∃𝑤 ∈ Fin ∀𝑦 ∈ (𝐴𝑤)(𝑦) = (𝐹𝑦)) ∧ X𝑦𝐴 (𝐺𝑦) = X𝑦𝐴 (𝑦)))
2623, 25sylibr 224 1 ((𝐴𝑉 ∧ (𝐺 Fn 𝐴 ∧ ∀𝑦𝐴 (𝐺𝑦) ∈ (𝐹𝑦)) ∧ (𝑊 ∈ Fin ∧ ∀𝑦 ∈ (𝐴𝑊)(𝐺𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝐺𝑦) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 383  w3a 1069   = wceq 1629  wex 1850  wcel 2143  {cab 2755  wral 3059  wrex 3060  Vcvv 3348  cdif 3717   cuni 4571   Fn wfn 6025  cfv 6030  Xcixp 8060  Fincfn 8107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1868  ax-4 1883  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2145  ax-9 2152  ax-10 2172  ax-11 2188  ax-12 2201  ax-13 2406  ax-ext 2749  ax-rep 4901  ax-sep 4911  ax-nul 4919  ax-pow 4970  ax-pr 5033  ax-un 7094
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1071  df-tru 1632  df-ex 1851  df-nf 1856  df-sb 2048  df-eu 2620  df-mo 2621  df-clab 2756  df-cleq 2762  df-clel 2765  df-nfc 2900  df-ne 2942  df-ral 3064  df-rex 3065  df-reu 3066  df-rab 3068  df-v 3350  df-sbc 3585  df-csb 3680  df-dif 3723  df-un 3725  df-in 3727  df-ss 3734  df-nul 4061  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-op 4320  df-uni 4572  df-iun 4653  df-br 4784  df-opab 4844  df-mpt 4861  df-id 5156  df-xp 5254  df-rel 5255  df-cnv 5256  df-co 5257  df-dm 5258  df-rn 5259  df-res 5260  df-ima 5261  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-ixp 8061
This theorem is referenced by:  elptr2  21604
  Copyright terms: Public domain W3C validator