![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpri | Structured version Visualization version GIF version |
Description: If a class is an element of a pair, then it is one of the two paired elements. (Contributed by Scott Fenton, 1-Apr-2011.) |
Ref | Expression |
---|---|
elpri | ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elprg 4229 | . 2 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 ∈ {𝐵, 𝐶} ↔ (𝐴 = 𝐵 ∨ 𝐴 = 𝐶))) | |
2 | 1 | ibi 256 | 1 ⊢ (𝐴 ∈ {𝐵, 𝐶} → (𝐴 = 𝐵 ∨ 𝐴 = 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 = wceq 1523 ∈ wcel 2030 {cpr 4212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-v 3233 df-un 3612 df-sn 4211 df-pr 4213 |
This theorem is referenced by: elpr2OLD 4233 nelpri 4234 nelprd 4236 tppreqb 4368 elpreqpr 4427 elpr2elpr 4429 prproe 4466 3elpr2eq 4467 opth1 4973 0nelop 4989 funtpgOLD 5981 ftpg 6463 2oconcl 7628 cantnflem2 8625 m1expcl2 12922 hash2pwpr 13296 bitsinv1lem 15210 prm23lt5 15566 xpscfv 16269 xpsfeq 16271 pmtrprfval 17953 m1expaddsub 17964 psgnprfval 17987 frgpuptinv 18230 frgpup3lem 18236 cnmsgnsubg 19971 zrhpsgnelbas 19988 mdetralt 20462 m2detleiblem1 20478 indiscld 20943 cnindis 21144 connclo 21266 txindis 21485 xpsxmetlem 22231 xpsmet 22234 ishl2 23212 recnprss 23713 recnperf 23714 dvlip2 23803 coseq0negpitopi 24300 pythag 24592 reasinsin 24668 scvxcvx 24757 perfectlem2 25000 lgslem4 25070 lgseisenlem2 25146 2lgsoddprmlem3 25184 usgredg4 26154 konigsberg 27235 ex-pr 27417 elpreq 29486 1neg1t1neg1 29642 signswch 30766 kur14lem7 31320 poimirlem31 33570 ftc1anclem2 33616 wepwsolem 37929 relexp01min 38322 clsk1indlem1 38660 ssrecnpr 38824 seff 38825 sblpnf 38826 expgrowthi 38849 dvconstbi 38850 sumpair 39508 refsum2cnlem1 39510 iooinlbub 40041 elprn1 40183 elprn2 40184 cncfiooicclem1 40424 dvmptconst 40447 dvmptidg 40449 dvmulcncf 40458 dvdivcncf 40460 elprneb 41620 perfectALTVlem2 41956 0dig2pr01 42729 |
Copyright terms: Public domain | W3C validator |