MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elpreqprb Structured version   Visualization version   GIF version

Theorem elpreqprb 4548
Description: A set is an element of an unordered pair iff there is another (maybe the same) set which is an element of the unordered pair. (Proposed by BJ, 8-Dec-2020.) (Contributed by AV, 9-Dec-2020.)
Assertion
Ref Expression
elpreqprb (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝑉

Proof of Theorem elpreqprb
StepHypRef Expression
1 elpreqpr 4547 . 2 (𝐴 ∈ {𝐵, 𝐶} → ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥})
2 prid1g 4439 . . . 4 (𝐴𝑉𝐴 ∈ {𝐴, 𝑥})
3 eleq2 2828 . . . 4 ({𝐵, 𝐶} = {𝐴, 𝑥} → (𝐴 ∈ {𝐵, 𝐶} ↔ 𝐴 ∈ {𝐴, 𝑥}))
42, 3syl5ibrcom 237 . . 3 (𝐴𝑉 → ({𝐵, 𝐶} = {𝐴, 𝑥} → 𝐴 ∈ {𝐵, 𝐶}))
54exlimdv 2010 . 2 (𝐴𝑉 → (∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥} → 𝐴 ∈ {𝐵, 𝐶}))
61, 5impbid2 216 1 (𝐴𝑉 → (𝐴 ∈ {𝐵, 𝐶} ↔ ∃𝑥{𝐵, 𝐶} = {𝐴, 𝑥}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1632  wex 1853  wcel 2139  {cpr 4323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-v 3342  df-dif 3718  df-un 3720  df-nul 4059  df-sn 4322  df-pr 4324
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator