![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpredim | Structured version Visualization version GIF version |
Description: Membership in a predecessor class - implicative version. (Contributed by Scott Fenton, 9-May-2012.) |
Ref | Expression |
---|---|
elpredim.1 | ⊢ 𝑋 ∈ V |
Ref | Expression |
---|---|
elpredim | ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pred 5718 | . . 3 ⊢ Pred(𝑅, 𝐴, 𝑋) = (𝐴 ∩ (◡𝑅 “ {𝑋})) | |
2 | 1 | elin2 3834 | . 2 ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) ↔ (𝑌 ∈ 𝐴 ∧ 𝑌 ∈ (◡𝑅 “ {𝑋}))) |
3 | elpredim.1 | . . . . 5 ⊢ 𝑋 ∈ V | |
4 | elimasng 5526 | . . . . . 6 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ (◡𝑅 “ {𝑋})) → (𝑌 ∈ (◡𝑅 “ {𝑋}) ↔ 〈𝑋, 𝑌〉 ∈ ◡𝑅)) | |
5 | opelcnvg 5334 | . . . . . 6 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ (◡𝑅 “ {𝑋})) → (〈𝑋, 𝑌〉 ∈ ◡𝑅 ↔ 〈𝑌, 𝑋〉 ∈ 𝑅)) | |
6 | 4, 5 | bitrd 268 | . . . . 5 ⊢ ((𝑋 ∈ V ∧ 𝑌 ∈ (◡𝑅 “ {𝑋})) → (𝑌 ∈ (◡𝑅 “ {𝑋}) ↔ 〈𝑌, 𝑋〉 ∈ 𝑅)) |
7 | 3, 6 | mpan 706 | . . . 4 ⊢ (𝑌 ∈ (◡𝑅 “ {𝑋}) → (𝑌 ∈ (◡𝑅 “ {𝑋}) ↔ 〈𝑌, 𝑋〉 ∈ 𝑅)) |
8 | 7 | ibi 256 | . . 3 ⊢ (𝑌 ∈ (◡𝑅 “ {𝑋}) → 〈𝑌, 𝑋〉 ∈ 𝑅) |
9 | df-br 4686 | . . 3 ⊢ (𝑌𝑅𝑋 ↔ 〈𝑌, 𝑋〉 ∈ 𝑅) | |
10 | 8, 9 | sylibr 224 | . 2 ⊢ (𝑌 ∈ (◡𝑅 “ {𝑋}) → 𝑌𝑅𝑋) |
11 | 2, 10 | simplbiim 659 | 1 ⊢ (𝑌 ∈ Pred(𝑅, 𝐴, 𝑋) → 𝑌𝑅𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 Vcvv 3231 {csn 4210 〈cop 4216 class class class wbr 4685 ◡ccnv 5142 “ cima 5146 Predcpred 5717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pr 4936 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-sn 4211 df-pr 4213 df-op 4217 df-br 4686 df-opab 4746 df-xp 5149 df-cnv 5151 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 |
This theorem is referenced by: predbrg 5738 preddowncl 5745 trpredrec 31862 |
Copyright terms: Public domain | W3C validator |