![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elprchashprn2 | Structured version Visualization version GIF version |
Description: If one element of an unordered pair is not a set, the size of the unordered pair is not 2. (Contributed by Alexander van der Vekens, 7-Oct-2017.) |
Ref | Expression |
---|---|
elprchashprn2 | ⊢ (¬ 𝑀 ∈ V → ¬ (#‘{𝑀, 𝑁}) = 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | prprc1 4332 | . 2 ⊢ (¬ 𝑀 ∈ V → {𝑀, 𝑁} = {𝑁}) | |
2 | hashsng 13197 | . . . 4 ⊢ (𝑁 ∈ V → (#‘{𝑁}) = 1) | |
3 | fveq2 6229 | . . . . . . . . 9 ⊢ ({𝑀, 𝑁} = {𝑁} → (#‘{𝑀, 𝑁}) = (#‘{𝑁})) | |
4 | 3 | eqcomd 2657 | . . . . . . . 8 ⊢ ({𝑀, 𝑁} = {𝑁} → (#‘{𝑁}) = (#‘{𝑀, 𝑁})) |
5 | 4 | eqeq1d 2653 | . . . . . . 7 ⊢ ({𝑀, 𝑁} = {𝑁} → ((#‘{𝑁}) = 1 ↔ (#‘{𝑀, 𝑁}) = 1)) |
6 | 5 | biimpa 500 | . . . . . 6 ⊢ (({𝑀, 𝑁} = {𝑁} ∧ (#‘{𝑁}) = 1) → (#‘{𝑀, 𝑁}) = 1) |
7 | id 22 | . . . . . . . 8 ⊢ ((#‘{𝑀, 𝑁}) = 1 → (#‘{𝑀, 𝑁}) = 1) | |
8 | 1ne2 11278 | . . . . . . . . 9 ⊢ 1 ≠ 2 | |
9 | 8 | a1i 11 | . . . . . . . 8 ⊢ ((#‘{𝑀, 𝑁}) = 1 → 1 ≠ 2) |
10 | 7, 9 | eqnetrd 2890 | . . . . . . 7 ⊢ ((#‘{𝑀, 𝑁}) = 1 → (#‘{𝑀, 𝑁}) ≠ 2) |
11 | 10 | neneqd 2828 | . . . . . 6 ⊢ ((#‘{𝑀, 𝑁}) = 1 → ¬ (#‘{𝑀, 𝑁}) = 2) |
12 | 6, 11 | syl 17 | . . . . 5 ⊢ (({𝑀, 𝑁} = {𝑁} ∧ (#‘{𝑁}) = 1) → ¬ (#‘{𝑀, 𝑁}) = 2) |
13 | 12 | expcom 450 | . . . 4 ⊢ ((#‘{𝑁}) = 1 → ({𝑀, 𝑁} = {𝑁} → ¬ (#‘{𝑀, 𝑁}) = 2)) |
14 | 2, 13 | syl 17 | . . 3 ⊢ (𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (#‘{𝑀, 𝑁}) = 2)) |
15 | snprc 4285 | . . . 4 ⊢ (¬ 𝑁 ∈ V ↔ {𝑁} = ∅) | |
16 | eqeq2 2662 | . . . . . . 7 ⊢ ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} ↔ {𝑀, 𝑁} = ∅)) | |
17 | 16 | biimpa 500 | . . . . . 6 ⊢ (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → {𝑀, 𝑁} = ∅) |
18 | hash0 13196 | . . . . . 6 ⊢ (#‘∅) = 0 | |
19 | fveq2 6229 | . . . . . . . . . 10 ⊢ ({𝑀, 𝑁} = ∅ → (#‘{𝑀, 𝑁}) = (#‘∅)) | |
20 | 19 | eqcomd 2657 | . . . . . . . . 9 ⊢ ({𝑀, 𝑁} = ∅ → (#‘∅) = (#‘{𝑀, 𝑁})) |
21 | 20 | eqeq1d 2653 | . . . . . . . 8 ⊢ ({𝑀, 𝑁} = ∅ → ((#‘∅) = 0 ↔ (#‘{𝑀, 𝑁}) = 0)) |
22 | 21 | biimpa 500 | . . . . . . 7 ⊢ (({𝑀, 𝑁} = ∅ ∧ (#‘∅) = 0) → (#‘{𝑀, 𝑁}) = 0) |
23 | id 22 | . . . . . . . . 9 ⊢ ((#‘{𝑀, 𝑁}) = 0 → (#‘{𝑀, 𝑁}) = 0) | |
24 | 0ne2 11277 | . . . . . . . . . 10 ⊢ 0 ≠ 2 | |
25 | 24 | a1i 11 | . . . . . . . . 9 ⊢ ((#‘{𝑀, 𝑁}) = 0 → 0 ≠ 2) |
26 | 23, 25 | eqnetrd 2890 | . . . . . . . 8 ⊢ ((#‘{𝑀, 𝑁}) = 0 → (#‘{𝑀, 𝑁}) ≠ 2) |
27 | 26 | neneqd 2828 | . . . . . . 7 ⊢ ((#‘{𝑀, 𝑁}) = 0 → ¬ (#‘{𝑀, 𝑁}) = 2) |
28 | 22, 27 | syl 17 | . . . . . 6 ⊢ (({𝑀, 𝑁} = ∅ ∧ (#‘∅) = 0) → ¬ (#‘{𝑀, 𝑁}) = 2) |
29 | 17, 18, 28 | sylancl 695 | . . . . 5 ⊢ (({𝑁} = ∅ ∧ {𝑀, 𝑁} = {𝑁}) → ¬ (#‘{𝑀, 𝑁}) = 2) |
30 | 29 | ex 449 | . . . 4 ⊢ ({𝑁} = ∅ → ({𝑀, 𝑁} = {𝑁} → ¬ (#‘{𝑀, 𝑁}) = 2)) |
31 | 15, 30 | sylbi 207 | . . 3 ⊢ (¬ 𝑁 ∈ V → ({𝑀, 𝑁} = {𝑁} → ¬ (#‘{𝑀, 𝑁}) = 2)) |
32 | 14, 31 | pm2.61i 176 | . 2 ⊢ ({𝑀, 𝑁} = {𝑁} → ¬ (#‘{𝑀, 𝑁}) = 2) |
33 | 1, 32 | syl 17 | 1 ⊢ (¬ 𝑀 ∈ V → ¬ (#‘{𝑀, 𝑁}) = 2) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 Vcvv 3231 ∅c0 3948 {csn 4210 {cpr 4212 ‘cfv 5926 0cc0 9974 1c1 9975 2c2 11108 #chash 13157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 |
This theorem is referenced by: hashprb 13223 |
Copyright terms: Public domain | W3C validator |