![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpmg | Structured version Visualization version GIF version |
Description: The predicate "is a partial function." (Contributed by Mario Carneiro, 14-Nov-2013.) |
Ref | Expression |
---|---|
elpmg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐶 ∧ 𝐶 ⊆ (𝐵 × 𝐴)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pmvalg 8036 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ↑pm 𝐵) = {𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑔}) | |
2 | 1 | eleq2d 2825 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑pm 𝐵) ↔ 𝐶 ∈ {𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑔})) |
3 | funeq 6069 | . . . . 5 ⊢ (𝑔 = 𝐶 → (Fun 𝑔 ↔ Fun 𝐶)) | |
4 | 3 | elrab 3504 | . . . 4 ⊢ (𝐶 ∈ {𝑔 ∈ 𝒫 (𝐵 × 𝐴) ∣ Fun 𝑔} ↔ (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ∧ Fun 𝐶)) |
5 | 2, 4 | syl6bb 276 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ∧ Fun 𝐶))) |
6 | ancom 465 | . . 3 ⊢ ((𝐶 ∈ 𝒫 (𝐵 × 𝐴) ∧ Fun 𝐶) ↔ (Fun 𝐶 ∧ 𝐶 ∈ 𝒫 (𝐵 × 𝐴))) | |
7 | 5, 6 | syl6bb 276 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐶 ∧ 𝐶 ∈ 𝒫 (𝐵 × 𝐴)))) |
8 | elex 3352 | . . . . 5 ⊢ (𝐶 ∈ 𝒫 (𝐵 × 𝐴) → 𝐶 ∈ V) | |
9 | 8 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) → 𝐶 ∈ V)) |
10 | xpexg 7126 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → (𝐵 × 𝐴) ∈ V) | |
11 | 10 | ancoms 468 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐵 × 𝐴) ∈ V) |
12 | ssexg 4956 | . . . . . 6 ⊢ ((𝐶 ⊆ (𝐵 × 𝐴) ∧ (𝐵 × 𝐴) ∈ V) → 𝐶 ∈ V) | |
13 | 12 | expcom 450 | . . . . 5 ⊢ ((𝐵 × 𝐴) ∈ V → (𝐶 ⊆ (𝐵 × 𝐴) → 𝐶 ∈ V)) |
14 | 11, 13 | syl 17 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ⊆ (𝐵 × 𝐴) → 𝐶 ∈ V)) |
15 | elpwg 4310 | . . . . 5 ⊢ (𝐶 ∈ V → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝐶 ⊆ (𝐵 × 𝐴))) | |
16 | 15 | a1i 11 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ V → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝐶 ⊆ (𝐵 × 𝐴)))) |
17 | 9, 14, 16 | pm5.21ndd 368 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ 𝒫 (𝐵 × 𝐴) ↔ 𝐶 ⊆ (𝐵 × 𝐴))) |
18 | 17 | anbi2d 742 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((Fun 𝐶 ∧ 𝐶 ∈ 𝒫 (𝐵 × 𝐴)) ↔ (Fun 𝐶 ∧ 𝐶 ⊆ (𝐵 × 𝐴)))) |
19 | 7, 18 | bitrd 268 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐶 ∈ (𝐴 ↑pm 𝐵) ↔ (Fun 𝐶 ∧ 𝐶 ⊆ (𝐵 × 𝐴)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 {crab 3054 Vcvv 3340 ⊆ wss 3715 𝒫 cpw 4302 × cxp 5264 Fun wfun 6043 (class class class)co 6814 ↑pm cpm 8026 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-pm 8028 |
This theorem is referenced by: elpm2g 8042 pmss12g 8052 elpm 8056 pmsspw 8060 lmfss 21322 lmmbr2 23277 iscau2 23295 caussi 23315 causs 23316 |
Copyright terms: Public domain | W3C validator |