![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elpm2r | Structured version Visualization version GIF version |
Description: Sufficient condition for being a partial function. (Contributed by NM, 31-Dec-2013.) |
Ref | Expression |
---|---|
elpm2r | ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fdm 6089 | . . . . . . 7 ⊢ (𝐹:𝐶⟶𝐴 → dom 𝐹 = 𝐶) | |
2 | 1 | feq2d 6069 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (𝐹:dom 𝐹⟶𝐴 ↔ 𝐹:𝐶⟶𝐴)) |
3 | 1 | sseq1d 3665 | . . . . . 6 ⊢ (𝐹:𝐶⟶𝐴 → (dom 𝐹 ⊆ 𝐵 ↔ 𝐶 ⊆ 𝐵)) |
4 | 2, 3 | anbi12d 747 | . . . . 5 ⊢ (𝐹:𝐶⟶𝐴 → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
5 | 4 | adantr 480 | . . . 4 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → ((𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵) ↔ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵))) |
6 | 5 | ibir 257 | . . 3 ⊢ ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵)) |
7 | elpm2g 7916 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐹 ∈ (𝐴 ↑pm 𝐵) ↔ (𝐹:dom 𝐹⟶𝐴 ∧ dom 𝐹 ⊆ 𝐵))) | |
8 | 6, 7 | syl5ibr 236 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵) → 𝐹 ∈ (𝐴 ↑pm 𝐵))) |
9 | 8 | imp 444 | 1 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (𝐹:𝐶⟶𝐴 ∧ 𝐶 ⊆ 𝐵)) → 𝐹 ∈ (𝐴 ↑pm 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2030 ⊆ wss 3607 dom cdm 5143 ⟶wf 5922 (class class class)co 6690 ↑pm cpm 7900 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-ral 2946 df-rex 2947 df-rab 2950 df-v 3233 df-sbc 3469 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-br 4686 df-opab 4746 df-id 5053 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-fv 5934 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-pm 7902 |
This theorem is referenced by: fpmg 7925 pmresg 7927 rlim 14270 ello12 14291 elo12 14302 sscpwex 16522 catcfuccl 16806 catcxpccl 16894 lmbrf 21112 cnextfval 21913 lmmbrf 23106 iscauf 23124 caucfil 23127 cmetcaulem 23132 lmclimf 23148 ismbf 23442 ismbfcn 23443 mbfconst 23447 cncombf 23470 cnmbf 23471 limcfval 23681 dvfval 23706 dvnff 23731 dvn2bss 23738 dvnfre 23760 taylfvallem1 24156 taylfval 24158 tayl0 24161 taylplem1 24162 taylply2 24167 taylply 24168 dvtaylp 24169 dvntaylp 24170 dvntaylp0 24171 taylthlem1 24172 taylthlem2 24173 ulmval 24179 ulmpm 24182 iscgrgd 25453 esumcvg 30276 mrsubfval 31531 elmrsubrn 31543 msubfval 31547 fwddifval 32394 fwddifnval 32395 fpmd 39797 xlimmnfvlem2 40377 xlimpnfvlem2 40381 dvnmptdivc 40471 dvnxpaek 40475 etransclem46 40815 issmflem 41257 fdivpm 42662 refdivpm 42663 elbigo2 42671 |
Copyright terms: Public domain | W3C validator |