Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpglem3 Structured version   Visualization version   GIF version

Theorem elpglem3 42988
Description: Lemma for elpg 42989. (Contributed by Emmett Weisz, 28-Aug-2021.)
Assertion
Ref Expression
elpglem3 (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦
Allowed substitution hint:   𝐴(𝑦)

Proof of Theorem elpglem3
StepHypRef Expression
1 vex 3344 . . . . . . . 8 𝑥 ∈ V
2 pweq 4306 . . . . . . . . . 10 (𝑦 = 𝑥 → 𝒫 𝑦 = 𝒫 𝑥)
32sqxpeqd 5299 . . . . . . . . 9 (𝑦 = 𝑥 → (𝒫 𝑦 × 𝒫 𝑦) = (𝒫 𝑥 × 𝒫 𝑥))
4 eqid 2761 . . . . . . . . 9 (𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦)) = (𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))
51pwex 4998 . . . . . . . . . 10 𝒫 𝑥 ∈ V
65, 5xpex 7129 . . . . . . . . 9 (𝒫 𝑥 × 𝒫 𝑥) ∈ V
73, 4, 6fvmpt 6446 . . . . . . . 8 (𝑥 ∈ V → ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) = (𝒫 𝑥 × 𝒫 𝑥))
81, 7ax-mp 5 . . . . . . 7 ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) = (𝒫 𝑥 × 𝒫 𝑥)
98eleq2i 2832 . . . . . 6 (𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) ↔ 𝐴 ∈ (𝒫 𝑥 × 𝒫 𝑥))
10 elxp7 7370 . . . . . 6 (𝐴 ∈ (𝒫 𝑥 × 𝒫 𝑥) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)))
119, 10bitri 264 . . . . 5 (𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥) ↔ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥)))
1211anbi2i 732 . . . 4 ((𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝑥 ⊆ Pg ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
13 an12 873 . . . 4 ((𝑥 ⊆ Pg ∧ (𝐴 ∈ (V × V) ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))) ↔ (𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
1412, 13bitri 264 . . 3 ((𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
1514exbii 1923 . 2 (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ ∃𝑥(𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
16 19.42v 2031 . 2 (∃𝑥(𝐴 ∈ (V × V) ∧ (𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
1715, 16bitri 264 1 (∃𝑥(𝑥 ⊆ Pg ∧ 𝐴 ∈ ((𝑦 ∈ V ↦ (𝒫 𝑦 × 𝒫 𝑦))‘𝑥)) ↔ (𝐴 ∈ (V × V) ∧ ∃𝑥(𝑥 ⊆ Pg ∧ ((1st𝐴) ∈ 𝒫 𝑥 ∧ (2nd𝐴) ∈ 𝒫 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1632  wex 1853  wcel 2140  Vcvv 3341  wss 3716  𝒫 cpw 4303  cmpt 4882   × cxp 5265  cfv 6050  1st c1st 7333  2nd c2nd 7334  Pgcpg 42984
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ral 3056  df-rex 3057  df-rab 3060  df-v 3343  df-sbc 3578  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-op 4329  df-uni 4590  df-br 4806  df-opab 4866  df-mpt 4883  df-id 5175  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-iota 6013  df-fun 6052  df-fv 6058  df-1st 7335  df-2nd 7336
This theorem is referenced by:  elpg  42989
  Copyright terms: Public domain W3C validator