Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpell14qr2 Structured version   Visualization version   GIF version

Theorem elpell14qr2 37946
Description: A number is a positive Pell solution iff it is positive and a Pell solution, justifying our name choice. (Contributed by Stefan O'Rear, 19-Oct-2014.)
Assertion
Ref Expression
elpell14qr2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)))

Proof of Theorem elpell14qr2
StepHypRef Expression
1 pell14qrss1234 37940 . . . 4 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) ⊆ (Pell1234QR‘𝐷))
21sselda 3744 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ (Pell1234QR‘𝐷))
3 pell14qrgt0 37943 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → 0 < 𝐴)
42, 3jca 555 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell14QR‘𝐷)) → (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴))
5 0re 10252 . . . . . . 7 0 ∈ ℝ
6 pell1234qrre 37936 . . . . . . 7 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → 𝐴 ∈ ℝ)
7 ltnsym 10347 . . . . . . 7 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → ¬ 𝐴 < 0))
85, 6, 7sylancr 698 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (0 < 𝐴 → ¬ 𝐴 < 0))
98impr 650 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → ¬ 𝐴 < 0)
106adantrr 755 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ)
1110lt0neg1d 10809 . . . . 5 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → (𝐴 < 0 ↔ 0 < -𝐴))
129, 11mtbid 313 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → ¬ 0 < -𝐴)
13 pell14qrgt0 37943 . . . . . 6 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ -𝐴 ∈ (Pell14QR‘𝐷)) → 0 < -𝐴)
1413ex 449 . . . . 5 (𝐷 ∈ (ℕ ∖ ◻NN) → (-𝐴 ∈ (Pell14QR‘𝐷) → 0 < -𝐴))
1514adantr 472 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → (-𝐴 ∈ (Pell14QR‘𝐷) → 0 < -𝐴))
1612, 15mtod 189 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → ¬ -𝐴 ∈ (Pell14QR‘𝐷))
17 pell1234qrdich 37945 . . . 4 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ 𝐴 ∈ (Pell1234QR‘𝐷)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
1817adantrr 755 . . 3 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → (𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)))
19 orel2 397 . . 3 (¬ -𝐴 ∈ (Pell14QR‘𝐷) → ((𝐴 ∈ (Pell14QR‘𝐷) ∨ -𝐴 ∈ (Pell14QR‘𝐷)) → 𝐴 ∈ (Pell14QR‘𝐷)))
2016, 18, 19sylc 65 . 2 ((𝐷 ∈ (ℕ ∖ ◻NN) ∧ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)) → 𝐴 ∈ (Pell14QR‘𝐷))
214, 20impbida 913 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ (Pell1234QR‘𝐷) ∧ 0 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 382  wa 383  wcel 2139  cdif 3712   class class class wbr 4804  cfv 6049  cr 10147  0cc0 10148   < clt 10286  -cneg 10479  cn 11232  NNcsquarenn 37920  Pell1234QRcpell1234qr 37922  Pell14QRcpell14qr 37923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225  ax-pre-sup 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-sup 8515  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-div 10897  df-nn 11233  df-2 11291  df-3 11292  df-n0 11505  df-z 11590  df-uz 11900  df-rp 12046  df-seq 13016  df-exp 13075  df-cj 14058  df-re 14059  df-im 14060  df-sqrt 14194  df-abs 14195  df-pell14qr 37927  df-pell1234qr 37928
This theorem is referenced by:  pell14qrmulcl  37947  pell14qrreccl  37948
  Copyright terms: Public domain W3C validator