Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elpell14qr Structured version   Visualization version   GIF version

Theorem elpell14qr 37932
Description: Membership in the set of positive Pell solutions. (Contributed by Stefan O'Rear, 17-Sep-2014.)
Assertion
Ref Expression
elpell14qr (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))))
Distinct variable groups:   𝑧,𝑤,𝐷   𝑧,𝐴,𝑤

Proof of Theorem elpell14qr
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 pell14qrval 37931 . . 3 (𝐷 ∈ (ℕ ∖ ◻NN) → (Pell14QR‘𝐷) = {𝑎 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)})
21eleq2d 2835 . 2 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ 𝐴 ∈ {𝑎 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)}))
3 eqeq1 2774 . . . . 5 (𝑎 = 𝐴 → (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ↔ 𝐴 = (𝑧 + ((√‘𝐷) · 𝑤))))
43anbi1d 607 . . . 4 (𝑎 = 𝐴 → ((𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1) ↔ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
542rexbidv 3204 . . 3 (𝑎 = 𝐴 → (∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1) ↔ ∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
65elrab 3513 . 2 (𝐴 ∈ {𝑎 ∈ ℝ ∣ ∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝑎 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)} ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1)))
72, 6syl6bb 276 1 (𝐷 ∈ (ℕ ∖ ◻NN) → (𝐴 ∈ (Pell14QR‘𝐷) ↔ (𝐴 ∈ ℝ ∧ ∃𝑧 ∈ ℕ0𝑤 ∈ ℤ (𝐴 = (𝑧 + ((√‘𝐷) · 𝑤)) ∧ ((𝑧↑2) − (𝐷 · (𝑤↑2))) = 1))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wrex 3061  {crab 3064  cdif 3718  cfv 6031  (class class class)co 6792  cr 10136  1c1 10138   + caddc 10140   · cmul 10142  cmin 10467  cn 11221  2c2 11271  0cn0 11493  cz 11578  cexp 13066  csqrt 14180  NNcsquarenn 37919  Pell14QRcpell14qr 37922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034  ax-cnex 10193  ax-resscn 10194
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-iota 5994  df-fun 6033  df-fv 6039  df-ov 6795  df-pell14qr 37926
This theorem is referenced by:  pell14qrss1234  37939  pell14qrgt0  37942  pell1234qrdich  37944  pell1qrss14  37951  pell14qrdich  37952  rmxycomplete  38001
  Copyright terms: Public domain W3C validator