MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elovmpt3imp Structured version   Visualization version   GIF version

Theorem elovmpt3imp 6875
Description: If the value of a function which is the result of an operation defined by the maps-to notation is not empty, the operands must be sets. Remark: a function which is the result of an operation can be regared as operation with 3 operands - therefore the abbreviation "mpt3" is used in the label. (Contributed by AV, 16-May-2019.)
Hypothesis
Ref Expression
elovmpt3imp.o 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀𝐵))
Assertion
Ref Expression
elovmpt3imp (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦,𝑧)   𝐵(𝑥,𝑦,𝑧)   𝑀(𝑥,𝑦,𝑧)   𝑂(𝑥,𝑦,𝑧)   𝑋(𝑥,𝑦,𝑧)   𝑌(𝑥,𝑦,𝑧)   𝑍(𝑥,𝑦,𝑧)

Proof of Theorem elovmpt3imp
StepHypRef Expression
1 ne0i 3913 . 2 (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → ((𝑋𝑂𝑌)‘𝑍) ≠ ∅)
2 ax-1 6 . . 3 ((𝑋 ∈ V ∧ 𝑌 ∈ V) → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
3 elovmpt3imp.o . . . . 5 𝑂 = (𝑥 ∈ V, 𝑦 ∈ V ↦ (𝑧𝑀𝐵))
43mpt2ndm0 6860 . . . 4 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (𝑋𝑂𝑌) = ∅)
5 fveq1 6177 . . . . 5 ((𝑋𝑂𝑌) = ∅ → ((𝑋𝑂𝑌)‘𝑍) = (∅‘𝑍))
6 0fv 6214 . . . . 5 (∅‘𝑍) = ∅
75, 6syl6eq 2670 . . . 4 ((𝑋𝑂𝑌) = ∅ → ((𝑋𝑂𝑌)‘𝑍) = ∅)
8 eqneqall 2802 . . . 4 (((𝑋𝑂𝑌)‘𝑍) = ∅ → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
94, 7, 83syl 18 . . 3 (¬ (𝑋 ∈ V ∧ 𝑌 ∈ V) → (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V)))
102, 9pm2.61i 176 . 2 (((𝑋𝑂𝑌)‘𝑍) ≠ ∅ → (𝑋 ∈ V ∧ 𝑌 ∈ V))
111, 10syl 17 1 (𝐴 ∈ ((𝑋𝑂𝑌)‘𝑍) → (𝑋 ∈ V ∧ 𝑌 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 384   = wceq 1481  wcel 1988  wne 2791  Vcvv 3195  c0 3907  cmpt 4720  cfv 5876  (class class class)co 6635  cmpt2 6637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-5 1837  ax-6 1886  ax-7 1933  ax-8 1990  ax-9 1997  ax-10 2017  ax-11 2032  ax-12 2045  ax-13 2244  ax-ext 2600  ax-sep 4772  ax-nul 4780  ax-pow 4834  ax-pr 4897
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1038  df-tru 1484  df-ex 1703  df-nf 1708  df-sb 1879  df-eu 2472  df-mo 2473  df-clab 2607  df-cleq 2613  df-clel 2616  df-nfc 2751  df-ne 2792  df-ral 2914  df-rex 2915  df-rab 2918  df-v 3197  df-dif 3570  df-un 3572  df-in 3574  df-ss 3581  df-nul 3908  df-if 4078  df-sn 4169  df-pr 4171  df-op 4175  df-uni 4428  df-br 4645  df-opab 4704  df-xp 5110  df-dm 5114  df-iota 5839  df-fv 5884  df-ov 6638  df-oprab 6639  df-mpt2 6640
This theorem is referenced by:  elovmpt3rab1  6878  elovmptnn0wrd  13331
  Copyright terms: Public domain W3C validator