![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elovmpt2 | Structured version Visualization version GIF version |
Description: Utility lemma for
two-parameter classes.
EDITORIAL: can simplify isghm 17861, islmhm 19229. (Contributed by Stefan O'Rear, 21-Jan-2015.) |
Ref | Expression |
---|---|
elovmpt2.d | ⊢ 𝐷 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) |
elovmpt2.c | ⊢ 𝐶 ∈ V |
elovmpt2.e | ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐸) |
Ref | Expression |
---|---|
elovmpt2 | ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elovmpt2.d | . . . 4 ⊢ 𝐷 = (𝑎 ∈ 𝐴, 𝑏 ∈ 𝐵 ↦ 𝐶) | |
2 | 1 | elmpt2cl 7041 | . . 3 ⊢ (𝐹 ∈ (𝑋𝐷𝑌) → (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵)) |
3 | elovmpt2.c | . . . . . . 7 ⊢ 𝐶 ∈ V | |
4 | 3 | gen2 1872 | . . . . . 6 ⊢ ∀𝑎∀𝑏 𝐶 ∈ V |
5 | elovmpt2.e | . . . . . . . 8 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → 𝐶 = 𝐸) | |
6 | 5 | eleq1d 2824 | . . . . . . 7 ⊢ ((𝑎 = 𝑋 ∧ 𝑏 = 𝑌) → (𝐶 ∈ V ↔ 𝐸 ∈ V)) |
7 | 6 | spc2gv 3436 | . . . . . 6 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (∀𝑎∀𝑏 𝐶 ∈ V → 𝐸 ∈ V)) |
8 | 4, 7 | mpi 20 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → 𝐸 ∈ V) |
9 | 5, 1 | ovmpt2ga 6955 | . . . . 5 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐸 ∈ V) → (𝑋𝐷𝑌) = 𝐸) |
10 | 8, 9 | mpd3an3 1574 | . . . 4 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝑋𝐷𝑌) = 𝐸) |
11 | 10 | eleq2d 2825 | . . 3 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) → (𝐹 ∈ (𝑋𝐷𝑌) ↔ 𝐹 ∈ 𝐸)) |
12 | 2, 11 | biadan2 677 | . 2 ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ 𝐸)) |
13 | df-3an 1074 | . 2 ⊢ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸) ↔ ((𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵) ∧ 𝐹 ∈ 𝐸)) | |
14 | 12, 13 | bitr4i 267 | 1 ⊢ (𝐹 ∈ (𝑋𝐷𝑌) ↔ (𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝐹 ∈ 𝐸)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∀wal 1630 = wceq 1632 ∈ wcel 2139 Vcvv 3340 (class class class)co 6813 ↦ cmpt2 6815 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-iota 6012 df-fun 6051 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 |
This theorem is referenced by: isgim 17905 oppglsm 18257 islmim 19264 |
Copyright terms: Public domain | W3C validator |