Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elnn0rabdioph Structured version   Visualization version   GIF version

Theorem elnn0rabdioph 37786
 Description: Diophantine set builder for nonnegativity constraints. The first builder which uses a witness variable internally; an expression is nonnegative if there is a nonnegative integer equal to it. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
elnn0rabdioph ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} ∈ (Dioph‘𝑁))
Distinct variable group:   𝑡,𝑁
Allowed substitution hint:   𝐴(𝑡)

Proof of Theorem elnn0rabdioph
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 risset 3164 . . . . 5 (𝐴 ∈ ℕ0 ↔ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴)
21rabbii 3289 . . . 4 {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴}
32a1i 11 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} = {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴})
4 nfcv 2866 . . . 4 𝑡(ℕ0𝑚 (1...𝑁))
5 nfcv 2866 . . . 4 𝑎(ℕ0𝑚 (1...𝑁))
6 nfv 1956 . . . 4 𝑎𝑏 ∈ ℕ0 𝑏 = 𝐴
7 nfcv 2866 . . . . 5 𝑡0
8 nfcsb1v 3655 . . . . . 6 𝑡𝑎 / 𝑡𝐴
98nfeq2 2882 . . . . 5 𝑡 𝑏 = 𝑎 / 𝑡𝐴
107, 9nfrex 3109 . . . 4 𝑡𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴
11 csbeq1a 3648 . . . . . 6 (𝑡 = 𝑎𝐴 = 𝑎 / 𝑡𝐴)
1211eqeq2d 2734 . . . . 5 (𝑡 = 𝑎 → (𝑏 = 𝐴𝑏 = 𝑎 / 𝑡𝐴))
1312rexbidv 3154 . . . 4 (𝑡 = 𝑎 → (∃𝑏 ∈ ℕ0 𝑏 = 𝐴 ↔ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴))
144, 5, 6, 10, 13cbvrab 3302 . . 3 {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝐴} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴}
153, 14syl6eq 2774 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} = {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴})
16 peano2nn0 11446 . . . . 5 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ0)
1716adantr 472 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑁 + 1) ∈ ℕ0)
18 ovex 6793 . . . . 5 (1...(𝑁 + 1)) ∈ V
19 nn0p1nn 11445 . . . . . . 7 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ ℕ)
20 elfz1end 12485 . . . . . . 7 ((𝑁 + 1) ∈ ℕ ↔ (𝑁 + 1) ∈ (1...(𝑁 + 1)))
2119, 20sylib 208 . . . . . 6 (𝑁 ∈ ℕ0 → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
2221adantr 472 . . . . 5 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑁 + 1) ∈ (1...(𝑁 + 1)))
23 mzpproj 37719 . . . . 5 (((1...(𝑁 + 1)) ∈ V ∧ (𝑁 + 1) ∈ (1...(𝑁 + 1))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
2418, 22, 23sylancr 698 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))))
25 eqid 2724 . . . . 5 (𝑁 + 1) = (𝑁 + 1)
2625rabdiophlem2 37785 . . . 4 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1))))
27 eqrabdioph 37760 . . . 4 (((𝑁 + 1) ∈ ℕ0 ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐‘(𝑁 + 1))) ∈ (mzPoly‘(1...(𝑁 + 1))) ∧ (𝑐 ∈ (ℤ ↑𝑚 (1...(𝑁 + 1))) ↦ (𝑐 ↾ (1...𝑁)) / 𝑡𝐴) ∈ (mzPoly‘(1...(𝑁 + 1)))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (𝑐‘(𝑁 + 1)) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴} ∈ (Dioph‘(𝑁 + 1)))
2817, 24, 26, 27syl3anc 1439 . . 3 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (𝑐‘(𝑁 + 1)) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴} ∈ (Dioph‘(𝑁 + 1)))
29 eqeq1 2728 . . . 4 (𝑏 = (𝑐‘(𝑁 + 1)) → (𝑏 = 𝑎 / 𝑡𝐴 ↔ (𝑐‘(𝑁 + 1)) = 𝑎 / 𝑡𝐴))
30 csbeq1 3642 . . . . 5 (𝑎 = (𝑐 ↾ (1...𝑁)) → 𝑎 / 𝑡𝐴 = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴)
3130eqeq2d 2734 . . . 4 (𝑎 = (𝑐 ↾ (1...𝑁)) → ((𝑐‘(𝑁 + 1)) = 𝑎 / 𝑡𝐴 ↔ (𝑐‘(𝑁 + 1)) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴))
3225, 29, 31rexrabdioph 37777 . . 3 ((𝑁 ∈ ℕ0 ∧ {𝑐 ∈ (ℕ0𝑚 (1...(𝑁 + 1))) ∣ (𝑐‘(𝑁 + 1)) = (𝑐 ↾ (1...𝑁)) / 𝑡𝐴} ∈ (Dioph‘(𝑁 + 1))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴} ∈ (Dioph‘𝑁))
3328, 32syldan 488 . 2 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑎 ∈ (ℕ0𝑚 (1...𝑁)) ∣ ∃𝑏 ∈ ℕ0 𝑏 = 𝑎 / 𝑡𝐴} ∈ (Dioph‘𝑁))
3415, 33eqeltrd 2803 1 ((𝑁 ∈ ℕ0 ∧ (𝑡 ∈ (ℤ ↑𝑚 (1...𝑁)) ↦ 𝐴) ∈ (mzPoly‘(1...𝑁))) → {𝑡 ∈ (ℕ0𝑚 (1...𝑁)) ∣ 𝐴 ∈ ℕ0} ∈ (Dioph‘𝑁))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1596   ∈ wcel 2103  ∃wrex 3015  {crab 3018  Vcvv 3304  ⦋csb 3639   ↦ cmpt 4837   ↾ cres 5220  ‘cfv 6001  (class class class)co 6765   ↑𝑚 cmap 7974  1c1 10050   + caddc 10052  ℕcn 11133  ℕ0cn0 11405  ℤcz 11490  ...cfz 12440  mzPolycmzp 37704  Diophcdioph 37737 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066  ax-inf2 8651  ax-cnex 10105  ax-resscn 10106  ax-1cn 10107  ax-icn 10108  ax-addcl 10109  ax-addrcl 10110  ax-mulcl 10111  ax-mulrcl 10112  ax-mulcom 10113  ax-addass 10114  ax-mulass 10115  ax-distr 10116  ax-i2m1 10117  ax-1ne0 10118  ax-1rid 10119  ax-rnegex 10120  ax-rrecex 10121  ax-cnre 10122  ax-pre-lttri 10123  ax-pre-lttrn 10124  ax-pre-ltadd 10125  ax-pre-mulgt0 10126 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-nel 3000  df-ral 3019  df-rex 3020  df-reu 3021  df-rmo 3022  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-pss 3696  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-tp 4290  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-tr 4861  df-id 5128  df-eprel 5133  df-po 5139  df-so 5140  df-fr 5177  df-we 5179  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-pred 5793  df-ord 5839  df-on 5840  df-lim 5841  df-suc 5842  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-riota 6726  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-of 7014  df-om 7183  df-1st 7285  df-2nd 7286  df-wrecs 7527  df-recs 7588  df-rdg 7626  df-1o 7680  df-oadd 7684  df-er 7862  df-map 7976  df-en 8073  df-dom 8074  df-sdom 8075  df-fin 8076  df-card 8878  df-cda 9103  df-pnf 10189  df-mnf 10190  df-xr 10191  df-ltxr 10192  df-le 10193  df-sub 10381  df-neg 10382  df-nn 11134  df-n0 11406  df-z 11491  df-uz 11801  df-fz 12441  df-hash 13233  df-mzpcl 37705  df-mzp 37706  df-dioph 37738 This theorem is referenced by:  lerabdioph  37788
 Copyright terms: Public domain W3C validator