![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elnn | Structured version Visualization version GIF version |
Description: A member of a natural number is a natural number. (Contributed by NM, 21-Jun-1998.) |
Ref | Expression |
---|---|
elnn | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ordom 7240 | . 2 ⊢ Ord ω | |
2 | ordtr 5898 | . 2 ⊢ (Ord ω → Tr ω) | |
3 | trel 4911 | . 2 ⊢ (Tr ω → ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω)) | |
4 | 1, 2, 3 | mp2b 10 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ ω) → 𝐴 ∈ ω) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2139 Tr wtr 4904 Ord word 5883 ωcom 7231 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pr 5055 ax-un 7115 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-br 4805 df-opab 4865 df-tr 4905 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-om 7232 |
This theorem is referenced by: nnaordi 7869 nnmordi 7882 pssnn 8345 ssnnfi 8346 unfilem1 8391 unfilem2 8392 inf3lem5 8704 cantnflt 8744 cantnfp1lem3 8752 cantnflem1d 8760 cantnflem1 8761 cnfcomlem 8771 cnfcom 8772 infpssrlem4 9340 axdc3lem2 9485 pwfseqlem3 9694 bnj1098 31182 bnj517 31283 bnj594 31310 bnj1001 31356 bnj1118 31380 bnj1128 31386 bnj1145 31389 elhf2 32609 hfelhf 32615 |
Copyright terms: Public domain | W3C validator |