MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elni2 Structured version   Visualization version   GIF version

Theorem elni2 9659
Description: Membership in the class of positive integers. (Contributed by NM, 27-Nov-1995.) (New usage is discouraged.)
Assertion
Ref Expression
elni2 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))

Proof of Theorem elni2
StepHypRef Expression
1 elni 9658 . 2 (𝐴N ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
2 nnord 7035 . . . 4 (𝐴 ∈ ω → Ord 𝐴)
3 ord0eln0 5748 . . . 4 (Ord 𝐴 → (∅ ∈ 𝐴𝐴 ≠ ∅))
42, 3syl 17 . . 3 (𝐴 ∈ ω → (∅ ∈ 𝐴𝐴 ≠ ∅))
54pm5.32i 668 . 2 ((𝐴 ∈ ω ∧ ∅ ∈ 𝐴) ↔ (𝐴 ∈ ω ∧ 𝐴 ≠ ∅))
61, 5bitr4i 267 1 (𝐴N ↔ (𝐴 ∈ ω ∧ ∅ ∈ 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 384  wcel 1987  wne 2790  c0 3897  Ord word 5691  ωcom 7027  Ncnpi 9626
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pr 4877  ax-un 6914
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-ral 2913  df-rex 2914  df-rab 2917  df-v 3192  df-sbc 3423  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-br 4624  df-opab 4684  df-tr 4723  df-eprel 4995  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-om 7028  df-ni 9654
This theorem is referenced by:  addclpi  9674  mulclpi  9675  mulcanpi  9682  addnidpi  9683  ltexpi  9684  ltmpi  9686  indpi  9689
  Copyright terms: Public domain W3C validator