Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmptrab Structured version   Visualization version   GIF version

Theorem elmptrab 21851
 Description: Membership in a one-parameter class of sets. (Contributed by Stefan O'Rear, 28-Jul-2015.)
Hypotheses
Ref Expression
elmptrab.f 𝐹 = (𝑥𝐷 ↦ {𝑦𝐵𝜑})
elmptrab.s1 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
elmptrab.s2 (𝑥 = 𝑋𝐵 = 𝐶)
elmptrab.ex (𝑥𝐷𝐵𝑉)
Assertion
Ref Expression
elmptrab (𝑌 ∈ (𝐹𝑋) ↔ (𝑋𝐷𝑌𝐶𝜓))
Distinct variable groups:   𝑥,𝑦,𝑋   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷   𝑥,𝑉,𝑦   𝑥,𝑌,𝑦   𝜓,𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐵(𝑥)   𝐷(𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem elmptrab
Dummy variables 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elmptrab.f . . 3 𝐹 = (𝑥𝐷 ↦ {𝑦𝐵𝜑})
21mptrcl 6433 . 2 (𝑌 ∈ (𝐹𝑋) → 𝑋𝐷)
3 simp1 1130 . 2 ((𝑋𝐷𝑌𝐶𝜓) → 𝑋𝐷)
4 csbeq1 3685 . . . . . 6 (𝑧 = 𝑋𝑧 / 𝑥𝐵 = 𝑋 / 𝑥𝐵)
5 dfsbcq 3589 . . . . . 6 (𝑧 = 𝑋 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝑋 / 𝑥][𝑤 / 𝑦]𝜑))
64, 5rabeqbidv 3345 . . . . 5 (𝑧 = 𝑋 → {𝑤𝑧 / 𝑥𝐵[𝑧 / 𝑥][𝑤 / 𝑦]𝜑} = {𝑤𝑋 / 𝑥𝐵[𝑋 / 𝑥][𝑤 / 𝑦]𝜑})
7 nfcv 2913 . . . . . . 7 𝑧{𝑦𝐵𝜑}
8 nfsbc1v 3607 . . . . . . . 8 𝑥[𝑧 / 𝑥][𝑤 / 𝑦]𝜑
9 nfcsb1v 3698 . . . . . . . 8 𝑥𝑧 / 𝑥𝐵
108, 9nfrab 3272 . . . . . . 7 𝑥{𝑤𝑧 / 𝑥𝐵[𝑧 / 𝑥][𝑤 / 𝑦]𝜑}
11 csbeq1a 3691 . . . . . . . . 9 (𝑥 = 𝑧𝐵 = 𝑧 / 𝑥𝐵)
12 sbceq1a 3598 . . . . . . . . 9 (𝑥 = 𝑧 → (𝜑[𝑧 / 𝑥]𝜑))
1311, 12rabeqbidv 3345 . . . . . . . 8 (𝑥 = 𝑧 → {𝑦𝐵𝜑} = {𝑦𝑧 / 𝑥𝐵[𝑧 / 𝑥]𝜑})
14 nfcv 2913 . . . . . . . . 9 𝑤𝑧 / 𝑥𝐵
15 nfcv 2913 . . . . . . . . 9 𝑦𝑧 / 𝑥𝐵
16 nfcv 2913 . . . . . . . . . 10 𝑦𝑧
17 nfsbc1v 3607 . . . . . . . . . 10 𝑦[𝑤 / 𝑦]𝜑
1816, 17nfsbc 3609 . . . . . . . . 9 𝑦[𝑧 / 𝑥][𝑤 / 𝑦]𝜑
19 nfv 1995 . . . . . . . . 9 𝑤[𝑧 / 𝑥]𝜑
20 sbceq1a 3598 . . . . . . . . . . 11 (𝑦 = 𝑤 → ([𝑧 / 𝑥]𝜑[𝑤 / 𝑦][𝑧 / 𝑥]𝜑))
2120equcoms 2105 . . . . . . . . . 10 (𝑤 = 𝑦 → ([𝑧 / 𝑥]𝜑[𝑤 / 𝑦][𝑧 / 𝑥]𝜑))
22 sbccom 3659 . . . . . . . . . 10 ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝑤 / 𝑦][𝑧 / 𝑥]𝜑)
2321, 22syl6rbbr 279 . . . . . . . . 9 (𝑤 = 𝑦 → ([𝑧 / 𝑥][𝑤 / 𝑦]𝜑[𝑧 / 𝑥]𝜑))
2414, 15, 18, 19, 23cbvrab 3348 . . . . . . . 8 {𝑤𝑧 / 𝑥𝐵[𝑧 / 𝑥][𝑤 / 𝑦]𝜑} = {𝑦𝑧 / 𝑥𝐵[𝑧 / 𝑥]𝜑}
2513, 24syl6eqr 2823 . . . . . . 7 (𝑥 = 𝑧 → {𝑦𝐵𝜑} = {𝑤𝑧 / 𝑥𝐵[𝑧 / 𝑥][𝑤 / 𝑦]𝜑})
267, 10, 25cbvmpt 4884 . . . . . 6 (𝑥𝐷 ↦ {𝑦𝐵𝜑}) = (𝑧𝐷 ↦ {𝑤𝑧 / 𝑥𝐵[𝑧 / 𝑥][𝑤 / 𝑦]𝜑})
271, 26eqtri 2793 . . . . 5 𝐹 = (𝑧𝐷 ↦ {𝑤𝑧 / 𝑥𝐵[𝑧 / 𝑥][𝑤 / 𝑦]𝜑})
28 nfv 1995 . . . . . . . 8 𝑥 𝑧𝐷
299nfel1 2928 . . . . . . . 8 𝑥𝑧 / 𝑥𝐵𝑉
3028, 29nfim 1977 . . . . . . 7 𝑥(𝑧𝐷𝑧 / 𝑥𝐵𝑉)
31 eleq1w 2833 . . . . . . . 8 (𝑥 = 𝑧 → (𝑥𝐷𝑧𝐷))
3211eleq1d 2835 . . . . . . . 8 (𝑥 = 𝑧 → (𝐵𝑉𝑧 / 𝑥𝐵𝑉))
3331, 32imbi12d 333 . . . . . . 7 (𝑥 = 𝑧 → ((𝑥𝐷𝐵𝑉) ↔ (𝑧𝐷𝑧 / 𝑥𝐵𝑉)))
34 elmptrab.ex . . . . . . 7 (𝑥𝐷𝐵𝑉)
3530, 33, 34chvar 2424 . . . . . 6 (𝑧𝐷𝑧 / 𝑥𝐵𝑉)
36 rabexg 4946 . . . . . 6 (𝑧 / 𝑥𝐵𝑉 → {𝑤𝑧 / 𝑥𝐵[𝑧 / 𝑥][𝑤 / 𝑦]𝜑} ∈ V)
3735, 36syl 17 . . . . 5 (𝑧𝐷 → {𝑤𝑧 / 𝑥𝐵[𝑧 / 𝑥][𝑤 / 𝑦]𝜑} ∈ V)
386, 27, 37fvmpt3 6430 . . . 4 (𝑋𝐷 → (𝐹𝑋) = {𝑤𝑋 / 𝑥𝐵[𝑋 / 𝑥][𝑤 / 𝑦]𝜑})
3938eleq2d 2836 . . 3 (𝑋𝐷 → (𝑌 ∈ (𝐹𝑋) ↔ 𝑌 ∈ {𝑤𝑋 / 𝑥𝐵[𝑋 / 𝑥][𝑤 / 𝑦]𝜑}))
40 dfsbcq 3589 . . . . . . 7 (𝑤 = 𝑌 → ([𝑤 / 𝑦]𝜑[𝑌 / 𝑦]𝜑))
4140sbcbidv 3642 . . . . . 6 (𝑤 = 𝑌 → ([𝑋 / 𝑥][𝑤 / 𝑦]𝜑[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
4241elrab 3515 . . . . 5 (𝑌 ∈ {𝑤𝑋 / 𝑥𝐵[𝑋 / 𝑥][𝑤 / 𝑦]𝜑} ↔ (𝑌𝑋 / 𝑥𝐵[𝑋 / 𝑥][𝑌 / 𝑦]𝜑))
4342a1i 11 . . . 4 (𝑋𝐷 → (𝑌 ∈ {𝑤𝑋 / 𝑥𝐵[𝑋 / 𝑥][𝑤 / 𝑦]𝜑} ↔ (𝑌𝑋 / 𝑥𝐵[𝑋 / 𝑥][𝑌 / 𝑦]𝜑)))
44 nfcvd 2914 . . . . . . 7 (𝑋𝐷𝑥𝐶)
45 elmptrab.s2 . . . . . . 7 (𝑥 = 𝑋𝐵 = 𝐶)
4644, 45csbiegf 3706 . . . . . 6 (𝑋𝐷𝑋 / 𝑥𝐵 = 𝐶)
4746eleq2d 2836 . . . . 5 (𝑋𝐷 → (𝑌𝑋 / 𝑥𝐵𝑌𝐶))
4847anbi1d 615 . . . 4 (𝑋𝐷 → ((𝑌𝑋 / 𝑥𝐵[𝑋 / 𝑥][𝑌 / 𝑦]𝜑) ↔ (𝑌𝐶[𝑋 / 𝑥][𝑌 / 𝑦]𝜑)))
49 nfv 1995 . . . . . 6 𝑥𝜓
50 nfv 1995 . . . . . 6 𝑦𝜓
51 nfv 1995 . . . . . 6 𝑥 𝑌𝐶
52 elmptrab.s1 . . . . . 6 ((𝑥 = 𝑋𝑦 = 𝑌) → (𝜑𝜓))
5349, 50, 51, 52sbc2iegf 3654 . . . . 5 ((𝑋𝐷𝑌𝐶) → ([𝑋 / 𝑥][𝑌 / 𝑦]𝜑𝜓))
5453pm5.32da 568 . . . 4 (𝑋𝐷 → ((𝑌𝐶[𝑋 / 𝑥][𝑌 / 𝑦]𝜑) ↔ (𝑌𝐶𝜓)))
5543, 48, 543bitrd 294 . . 3 (𝑋𝐷 → (𝑌 ∈ {𝑤𝑋 / 𝑥𝐵[𝑋 / 𝑥][𝑤 / 𝑦]𝜑} ↔ (𝑌𝐶𝜓)))
56 3anass 1080 . . . 4 ((𝑋𝐷𝑌𝐶𝜓) ↔ (𝑋𝐷 ∧ (𝑌𝐶𝜓)))
5756baibr 526 . . 3 (𝑋𝐷 → ((𝑌𝐶𝜓) ↔ (𝑋𝐷𝑌𝐶𝜓)))
5839, 55, 573bitrd 294 . 2 (𝑋𝐷 → (𝑌 ∈ (𝐹𝑋) ↔ (𝑋𝐷𝑌𝐶𝜓)))
592, 3, 58pm5.21nii 367 1 (𝑌 ∈ (𝐹𝑋) ↔ (𝑋𝐷𝑌𝐶𝜓))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 382   ∧ w3a 1071   = wceq 1631   ∈ wcel 2145  {crab 3065  Vcvv 3351  [wsbc 3587  ⦋csb 3682   ↦ cmpt 4864  ‘cfv 6030 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ral 3066  df-rex 3067  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-uni 4576  df-br 4788  df-opab 4848  df-mpt 4865  df-id 5158  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-iota 5993  df-fun 6032  df-fv 6038 This theorem is referenced by:  elmptrab2  21852  isfbas  21853
 Copyright terms: Public domain W3C validator