MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elmpt2cl1 Structured version   Visualization version   GIF version

Theorem elmpt2cl1 7043
Description: If a two-parameter class is not empty, the first argument is in its nominal domain. (Contributed by FL, 15-Oct-2012.) (Revised by Stefan O'Rear, 7-Mar-2015.)
Hypothesis
Ref Expression
elmpt2cl.f 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
elmpt2cl1 (𝑋 ∈ (𝑆𝐹𝑇) → 𝑆𝐴)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝑇(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem elmpt2cl1
StepHypRef Expression
1 elmpt2cl.f . . 3 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
21elmpt2cl 7042 . 2 (𝑋 ∈ (𝑆𝐹𝑇) → (𝑆𝐴𝑇𝐵))
32simpld 477 1 (𝑋 ∈ (𝑆𝐹𝑇) → 𝑆𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1632  wcel 2139  (class class class)co 6814  cmpt2 6816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-xp 5272  df-dm 5276  df-iota 6012  df-fv 6057  df-ov 6817  df-oprab 6818  df-mpt2 6819
This theorem is referenced by:  iccssico2  12460  mhmrcl1  17559  rhmrcl1  18941  cncfrss  22915  lbioc  40260
  Copyright terms: Public domain W3C validator