![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ellspd | Structured version Visualization version GIF version |
Description: The elements of the span of an indexed collection of basic vectors are those vectors which can be written as finite linear combinations of basic vectors. (Contributed by Stefan O'Rear, 7-Feb-2015.) (Revised by AV, 24-Jun-2019.) |
Ref | Expression |
---|---|
ellspd.n | ⊢ 𝑁 = (LSpan‘𝑀) |
ellspd.v | ⊢ 𝐵 = (Base‘𝑀) |
ellspd.k | ⊢ 𝐾 = (Base‘𝑆) |
ellspd.s | ⊢ 𝑆 = (Scalar‘𝑀) |
ellspd.z | ⊢ 0 = (0g‘𝑆) |
ellspd.t | ⊢ · = ( ·𝑠 ‘𝑀) |
ellspd.f | ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) |
ellspd.m | ⊢ (𝜑 → 𝑀 ∈ LMod) |
ellspd.i | ⊢ (𝜑 → 𝐼 ∈ V) |
Ref | Expression |
---|---|
ellspd | ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑𝑚 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellspd.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐼⟶𝐵) | |
2 | ffn 6207 | . . . . . 6 ⊢ (𝐹:𝐼⟶𝐵 → 𝐹 Fn 𝐼) | |
3 | fnima 6172 | . . . . . 6 ⊢ (𝐹 Fn 𝐼 → (𝐹 “ 𝐼) = ran 𝐹) | |
4 | 1, 2, 3 | 3syl 18 | . . . . 5 ⊢ (𝜑 → (𝐹 “ 𝐼) = ran 𝐹) |
5 | 4 | fveq2d 6358 | . . . 4 ⊢ (𝜑 → (𝑁‘(𝐹 “ 𝐼)) = (𝑁‘ran 𝐹)) |
6 | eqid 2761 | . . . . . 6 ⊢ (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))) = (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))) | |
7 | 6 | rnmpt 5527 | . . . . 5 ⊢ ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))} |
8 | eqid 2761 | . . . . . 6 ⊢ (𝑆 freeLMod 𝐼) = (𝑆 freeLMod 𝐼) | |
9 | eqid 2761 | . . . . . 6 ⊢ (Base‘(𝑆 freeLMod 𝐼)) = (Base‘(𝑆 freeLMod 𝐼)) | |
10 | ellspd.v | . . . . . 6 ⊢ 𝐵 = (Base‘𝑀) | |
11 | ellspd.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑀) | |
12 | ellspd.m | . . . . . 6 ⊢ (𝜑 → 𝑀 ∈ LMod) | |
13 | ellspd.i | . . . . . 6 ⊢ (𝜑 → 𝐼 ∈ V) | |
14 | ellspd.s | . . . . . . 7 ⊢ 𝑆 = (Scalar‘𝑀) | |
15 | 14 | a1i 11 | . . . . . 6 ⊢ (𝜑 → 𝑆 = (Scalar‘𝑀)) |
16 | ellspd.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑀) | |
17 | 8, 9, 10, 11, 6, 12, 13, 15, 1, 16 | frlmup3 20362 | . . . . 5 ⊢ (𝜑 → ran (𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼)) ↦ (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))) = (𝑁‘ran 𝐹)) |
18 | 7, 17 | syl5eqr 2809 | . . . 4 ⊢ (𝜑 → {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))} = (𝑁‘ran 𝐹)) |
19 | 5, 18 | eqtr4d 2798 | . . 3 ⊢ (𝜑 → (𝑁‘(𝐹 “ 𝐼)) = {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))}) |
20 | 19 | eleq2d 2826 | . 2 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ 𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))})) |
21 | ovex 6843 | . . . . . 6 ⊢ (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)) ∈ V | |
22 | eleq1 2828 | . . . . . 6 ⊢ (𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)) → (𝑋 ∈ V ↔ (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)) ∈ V)) | |
23 | 21, 22 | mpbiri 248 | . . . . 5 ⊢ (𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)) → 𝑋 ∈ V) |
24 | 23 | rexlimivw 3168 | . . . 4 ⊢ (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)) → 𝑋 ∈ V) |
25 | eqeq1 2765 | . . . . 5 ⊢ (𝑎 = 𝑋 → (𝑎 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)) ↔ 𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)))) | |
26 | 25 | rexbidv 3191 | . . . 4 ⊢ (𝑎 = 𝑋 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)) ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)))) |
27 | 24, 26 | elab3 3499 | . . 3 ⊢ (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))} ↔ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))) |
28 | fvex 6364 | . . . . . . . 8 ⊢ (Scalar‘𝑀) ∈ V | |
29 | 14, 28 | eqeltri 2836 | . . . . . . 7 ⊢ 𝑆 ∈ V |
30 | ellspd.k | . . . . . . . 8 ⊢ 𝐾 = (Base‘𝑆) | |
31 | ellspd.z | . . . . . . . 8 ⊢ 0 = (0g‘𝑆) | |
32 | eqid 2761 | . . . . . . . 8 ⊢ {𝑎 ∈ (𝐾 ↑𝑚 𝐼) ∣ 𝑎 finSupp 0 } = {𝑎 ∈ (𝐾 ↑𝑚 𝐼) ∣ 𝑎 finSupp 0 } | |
33 | 8, 30, 31, 32 | frlmbas 20322 | . . . . . . 7 ⊢ ((𝑆 ∈ V ∧ 𝐼 ∈ V) → {𝑎 ∈ (𝐾 ↑𝑚 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼))) |
34 | 29, 13, 33 | sylancr 698 | . . . . . 6 ⊢ (𝜑 → {𝑎 ∈ (𝐾 ↑𝑚 𝐼) ∣ 𝑎 finSupp 0 } = (Base‘(𝑆 freeLMod 𝐼))) |
35 | 34 | eqcomd 2767 | . . . . 5 ⊢ (𝜑 → (Base‘(𝑆 freeLMod 𝐼)) = {𝑎 ∈ (𝐾 ↑𝑚 𝐼) ∣ 𝑎 finSupp 0 }) |
36 | 35 | rexeqdv 3285 | . . . 4 ⊢ (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)) ↔ ∃𝑓 ∈ {𝑎 ∈ (𝐾 ↑𝑚 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)))) |
37 | breq1 4808 | . . . . 5 ⊢ (𝑎 = 𝑓 → (𝑎 finSupp 0 ↔ 𝑓 finSupp 0 )) | |
38 | 37 | rexrab 3512 | . . . 4 ⊢ (∃𝑓 ∈ {𝑎 ∈ (𝐾 ↑𝑚 𝐼) ∣ 𝑎 finSupp 0 }𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)) ↔ ∃𝑓 ∈ (𝐾 ↑𝑚 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)))) |
39 | 36, 38 | syl6bb 276 | . . 3 ⊢ (𝜑 → (∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹)) ↔ ∃𝑓 ∈ (𝐾 ↑𝑚 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))))) |
40 | 27, 39 | syl5bb 272 | . 2 ⊢ (𝜑 → (𝑋 ∈ {𝑎 ∣ ∃𝑓 ∈ (Base‘(𝑆 freeLMod 𝐼))𝑎 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))} ↔ ∃𝑓 ∈ (𝐾 ↑𝑚 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))))) |
41 | 20, 40 | bitrd 268 | 1 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘(𝐹 “ 𝐼)) ↔ ∃𝑓 ∈ (𝐾 ↑𝑚 𝐼)(𝑓 finSupp 0 ∧ 𝑋 = (𝑀 Σg (𝑓 ∘𝑓 · 𝐹))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 {cab 2747 ∃wrex 3052 {crab 3055 Vcvv 3341 class class class wbr 4805 ↦ cmpt 4882 ran crn 5268 “ cima 5270 Fn wfn 6045 ⟶wf 6046 ‘cfv 6050 (class class class)co 6815 ∘𝑓 cof 7062 ↑𝑚 cmap 8026 finSupp cfsupp 8443 Basecbs 16080 Scalarcsca 16167 ·𝑠 cvsca 16168 0gc0g 16323 Σg cgsu 16324 LModclmod 19086 LSpanclspn 19194 freeLMod cfrlm 20313 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-inf2 8714 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-iin 4676 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-se 5227 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-isom 6059 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-of 7064 df-om 7233 df-1st 7335 df-2nd 7336 df-supp 7466 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-map 8028 df-ixp 8078 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-fsupp 8444 df-sup 8516 df-oi 8583 df-card 8976 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-7 11297 df-8 11298 df-9 11299 df-n0 11506 df-z 11591 df-dec 11707 df-uz 11901 df-fz 12541 df-fzo 12681 df-seq 13017 df-hash 13333 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-sca 16180 df-vsca 16181 df-ip 16182 df-tset 16183 df-ple 16184 df-ds 16187 df-hom 16189 df-cco 16190 df-0g 16325 df-gsum 16326 df-prds 16331 df-pws 16333 df-mre 16469 df-mrc 16470 df-acs 16472 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-mhm 17557 df-submnd 17558 df-grp 17647 df-minusg 17648 df-sbg 17649 df-mulg 17763 df-subg 17813 df-ghm 17880 df-cntz 17971 df-cmn 18416 df-abl 18417 df-mgp 18711 df-ur 18723 df-ring 18770 df-subrg 19001 df-lmod 19088 df-lss 19156 df-lsp 19195 df-lmhm 19245 df-lbs 19298 df-sra 19395 df-rgmod 19396 df-nzr 19481 df-dsmm 20299 df-frlm 20314 df-uvc 20345 |
This theorem is referenced by: elfilspd 20365 islindf4 20400 |
Copyright terms: Public domain | W3C validator |