![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ellogrn | Structured version Visualization version GIF version |
Description: Write out the property 𝐴 ∈ ran log explicitly. (Contributed by Mario Carneiro, 1-Apr-2015.) |
Ref | Expression |
---|---|
ellogrn | ⊢ (𝐴 ∈ ran log ↔ (𝐴 ∈ ℂ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | imf 14072 | . . . 4 ⊢ ℑ:ℂ⟶ℝ | |
2 | ffn 6206 | . . . 4 ⊢ (ℑ:ℂ⟶ℝ → ℑ Fn ℂ) | |
3 | elpreima 6501 | . . . 4 ⊢ (ℑ Fn ℂ → (𝐴 ∈ (◡ℑ “ (-π(,]π)) ↔ (𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ∈ (-π(,]π)))) | |
4 | 1, 2, 3 | mp2b 10 | . . 3 ⊢ (𝐴 ∈ (◡ℑ “ (-π(,]π)) ↔ (𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ∈ (-π(,]π))) |
5 | imcl 14070 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (ℑ‘𝐴) ∈ ℝ) | |
6 | 5 | biantrurd 530 | . . . . 5 ⊢ (𝐴 ∈ ℂ → ((-π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π) ↔ ((ℑ‘𝐴) ∈ ℝ ∧ (-π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π)))) |
7 | pire 24430 | . . . . . . . . 9 ⊢ π ∈ ℝ | |
8 | 7 | renegcli 10554 | . . . . . . . 8 ⊢ -π ∈ ℝ |
9 | 8 | rexri 10309 | . . . . . . 7 ⊢ -π ∈ ℝ* |
10 | elioc2 12449 | . . . . . . 7 ⊢ ((-π ∈ ℝ* ∧ π ∈ ℝ) → ((ℑ‘𝐴) ∈ (-π(,]π) ↔ ((ℑ‘𝐴) ∈ ℝ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))) | |
11 | 9, 7, 10 | mp2an 710 | . . . . . 6 ⊢ ((ℑ‘𝐴) ∈ (-π(,]π) ↔ ((ℑ‘𝐴) ∈ ℝ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π)) |
12 | 3anass 1081 | . . . . . 6 ⊢ (((ℑ‘𝐴) ∈ ℝ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π) ↔ ((ℑ‘𝐴) ∈ ℝ ∧ (-π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))) | |
13 | 11, 12 | bitri 264 | . . . . 5 ⊢ ((ℑ‘𝐴) ∈ (-π(,]π) ↔ ((ℑ‘𝐴) ∈ ℝ ∧ (-π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))) |
14 | 6, 13 | syl6rbbr 279 | . . . 4 ⊢ (𝐴 ∈ ℂ → ((ℑ‘𝐴) ∈ (-π(,]π) ↔ (-π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))) |
15 | 14 | pm5.32i 672 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ (ℑ‘𝐴) ∈ (-π(,]π)) ↔ (𝐴 ∈ ℂ ∧ (-π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))) |
16 | 4, 15 | bitri 264 | . 2 ⊢ (𝐴 ∈ (◡ℑ “ (-π(,]π)) ↔ (𝐴 ∈ ℂ ∧ (-π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))) |
17 | logrn 24525 | . . 3 ⊢ ran log = (◡ℑ “ (-π(,]π)) | |
18 | 17 | eleq2i 2831 | . 2 ⊢ (𝐴 ∈ ran log ↔ 𝐴 ∈ (◡ℑ “ (-π(,]π))) |
19 | 3anass 1081 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π) ↔ (𝐴 ∈ ℂ ∧ (-π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π))) | |
20 | 16, 18, 19 | 3bitr4i 292 | 1 ⊢ (𝐴 ∈ ran log ↔ (𝐴 ∈ ℂ ∧ -π < (ℑ‘𝐴) ∧ (ℑ‘𝐴) ≤ π)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 ∧ w3a 1072 ∈ wcel 2139 class class class wbr 4804 ◡ccnv 5265 ran crn 5267 “ cima 5269 Fn wfn 6044 ⟶wf 6045 ‘cfv 6049 (class class class)co 6814 ℂcc 10146 ℝcr 10147 ℝ*cxr 10285 < clt 10286 ≤ cle 10287 -cneg 10479 (,]cioc 12389 ℑcim 14057 πcpi 15016 logclog 24521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-inf2 8713 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 ax-pre-sup 10226 ax-addf 10227 ax-mulf 10228 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-se 5226 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-isom 6058 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-of 7063 df-om 7232 df-1st 7334 df-2nd 7335 df-supp 7465 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-2o 7731 df-oadd 7734 df-er 7913 df-map 8027 df-pm 8028 df-ixp 8077 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-fsupp 8443 df-fi 8484 df-sup 8515 df-inf 8516 df-oi 8582 df-card 8975 df-cda 9202 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-div 10897 df-nn 11233 df-2 11291 df-3 11292 df-4 11293 df-5 11294 df-6 11295 df-7 11296 df-8 11297 df-9 11298 df-n0 11505 df-z 11590 df-dec 11706 df-uz 11900 df-q 12002 df-rp 12046 df-xneg 12159 df-xadd 12160 df-xmul 12161 df-ioo 12392 df-ioc 12393 df-ico 12394 df-icc 12395 df-fz 12540 df-fzo 12680 df-fl 12807 df-mod 12883 df-seq 13016 df-exp 13075 df-fac 13275 df-bc 13304 df-hash 13332 df-shft 14026 df-cj 14058 df-re 14059 df-im 14060 df-sqrt 14194 df-abs 14195 df-limsup 14421 df-clim 14438 df-rlim 14439 df-sum 14636 df-ef 15017 df-sin 15019 df-cos 15020 df-pi 15022 df-struct 16081 df-ndx 16082 df-slot 16083 df-base 16085 df-sets 16086 df-ress 16087 df-plusg 16176 df-mulr 16177 df-starv 16178 df-sca 16179 df-vsca 16180 df-ip 16181 df-tset 16182 df-ple 16183 df-ds 16186 df-unif 16187 df-hom 16188 df-cco 16189 df-rest 16305 df-topn 16306 df-0g 16324 df-gsum 16325 df-topgen 16326 df-pt 16327 df-prds 16330 df-xrs 16384 df-qtop 16389 df-imas 16390 df-xps 16392 df-mre 16468 df-mrc 16469 df-acs 16471 df-mgm 17463 df-sgrp 17505 df-mnd 17516 df-submnd 17557 df-mulg 17762 df-cntz 17970 df-cmn 18415 df-psmet 19960 df-xmet 19961 df-met 19962 df-bl 19963 df-mopn 19964 df-fbas 19965 df-fg 19966 df-cnfld 19969 df-top 20921 df-topon 20938 df-topsp 20959 df-bases 20972 df-cld 21045 df-ntr 21046 df-cls 21047 df-nei 21124 df-lp 21162 df-perf 21163 df-cn 21253 df-cnp 21254 df-haus 21341 df-tx 21587 df-hmeo 21780 df-fil 21871 df-fm 21963 df-flim 21964 df-flf 21965 df-xms 22346 df-ms 22347 df-tms 22348 df-cncf 22902 df-limc 23849 df-dv 23850 df-log 24523 |
This theorem is referenced by: relogrn 24528 logrncn 24529 logimcl 24536 logrnaddcl 24541 logneg 24554 logcj 24572 logimul 24580 logneg2 24581 logcnlem4 24611 logf1o2 24616 logreclem 24720 asinsin 24839 asin1 24841 atanlogaddlem 24860 atanlogsub 24863 atantan 24870 logi 31948 |
Copyright terms: Public domain | W3C validator |