![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellimciota | Structured version Visualization version GIF version |
Description: An explicit value for the limit, when the limit exists at a limit point. (Contributed by Glauco Siliprandi, 11-Dec-2019.) |
Ref | Expression |
---|---|
ellimciota.f | ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) |
ellimciota.a | ⊢ (𝜑 → 𝐴 ⊆ ℂ) |
ellimciota.b | ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) |
ellimciota.4 | ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) |
ellimciota.k | ⊢ 𝐾 = (TopOpen‘ℂfld) |
Ref | Expression |
---|---|
ellimciota | ⊢ (𝜑 → (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eleq1 2838 | . . 3 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ 𝑦 ∈ (𝐹 limℂ 𝐵))) | |
2 | 1 | cbviotav 6000 | . 2 ⊢ (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) = (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) |
3 | iotaex 6011 | . . . 4 ⊢ (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ V | |
4 | ellimciota.4 | . . . . . 6 ⊢ (𝜑 → (𝐹 limℂ 𝐵) ≠ ∅) | |
5 | n0 4078 | . . . . . 6 ⊢ ((𝐹 limℂ 𝐵) ≠ ∅ ↔ ∃𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) | |
6 | 4, 5 | sylib 208 | . . . . 5 ⊢ (𝜑 → ∃𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) |
7 | ellimciota.f | . . . . . 6 ⊢ (𝜑 → 𝐹:𝐴⟶ℂ) | |
8 | ellimciota.a | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ ℂ) | |
9 | ellimciota.b | . . . . . 6 ⊢ (𝜑 → 𝐵 ∈ ((limPt‘𝐾)‘𝐴)) | |
10 | ellimciota.k | . . . . . 6 ⊢ 𝐾 = (TopOpen‘ℂfld) | |
11 | 7, 8, 9, 10 | limcmo 23866 | . . . . 5 ⊢ (𝜑 → ∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) |
12 | eu5 2644 | . . . . 5 ⊢ (∃!𝑥 𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (∃𝑥 𝑥 ∈ (𝐹 limℂ 𝐵) ∧ ∃*𝑥 𝑥 ∈ (𝐹 limℂ 𝐵))) | |
13 | 6, 11, 12 | sylanbrc 572 | . . . 4 ⊢ (𝜑 → ∃!𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) |
14 | eleq1 2838 | . . . . 5 ⊢ (𝑥 = (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) → (𝑥 ∈ (𝐹 limℂ 𝐵) ↔ (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵))) | |
15 | 14 | iota2 6020 | . . . 4 ⊢ (((℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ V ∧ ∃!𝑥 𝑥 ∈ (𝐹 limℂ 𝐵)) → ((℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵) ↔ (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) = (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)))) |
16 | 3, 13, 15 | sylancr 575 | . . 3 ⊢ (𝜑 → ((℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵) ↔ (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) = (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)))) |
17 | 2, 16 | mpbiri 248 | . 2 ⊢ (𝜑 → (℩𝑦𝑦 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵)) |
18 | 2, 17 | syl5eqel 2854 | 1 ⊢ (𝜑 → (℩𝑥𝑥 ∈ (𝐹 limℂ 𝐵)) ∈ (𝐹 limℂ 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1631 ∃wex 1852 ∈ wcel 2145 ∃!weu 2618 ∃*wmo 2619 ≠ wne 2943 Vcvv 3351 ⊆ wss 3723 ∅c0 4063 ℩cio 5992 ⟶wf 6027 ‘cfv 6031 (class class class)co 6793 ℂcc 10136 TopOpenctopn 16290 ℂfldccnfld 19961 limPtclp 21159 limℂ climc 23846 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-pre-sup 10216 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-om 7213 df-1st 7315 df-2nd 7316 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-pm 8012 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-fi 8473 df-sup 8504 df-inf 8505 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-div 10887 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-7 11286 df-8 11287 df-9 11288 df-n0 11495 df-z 11580 df-dec 11696 df-uz 11889 df-q 11992 df-rp 12036 df-xneg 12151 df-xadd 12152 df-xmul 12153 df-icc 12387 df-fz 12534 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-plusg 16162 df-mulr 16163 df-starv 16164 df-tset 16168 df-ple 16169 df-ds 16172 df-unif 16173 df-rest 16291 df-topn 16292 df-topgen 16312 df-psmet 19953 df-xmet 19954 df-met 19955 df-bl 19956 df-mopn 19957 df-fbas 19958 df-fg 19959 df-cnfld 19962 df-top 20919 df-topon 20936 df-topsp 20958 df-bases 20971 df-cld 21044 df-ntr 21045 df-cls 21046 df-nei 21123 df-lp 21161 df-cnp 21253 df-haus 21340 df-fil 21870 df-fm 21962 df-flim 21963 df-flf 21964 df-xms 22345 df-ms 22346 df-limc 23850 |
This theorem is referenced by: fourierdlem94 40934 fourierdlem113 40953 |
Copyright terms: Public domain | W3C validator |