![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elixx3g | Structured version Visualization version GIF version |
Description: Membership in a set of open intervals of extended reals. We use the fact that an operation's value is empty outside of its domain to show 𝐴 ∈ ℝ* and 𝐵 ∈ ℝ*. (Contributed by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
ixx.1 | ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) |
Ref | Expression |
---|---|
elixx3g | ⊢ (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anass 684 | . 2 ⊢ ((((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵)) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵)))) | |
2 | df-3an 1074 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*)) | |
3 | 2 | anbi1i 733 | . 2 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵)) ↔ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
4 | ixx.1 | . . . . 5 ⊢ 𝑂 = (𝑥 ∈ ℝ*, 𝑦 ∈ ℝ* ↦ {𝑧 ∈ ℝ* ∣ (𝑥𝑅𝑧 ∧ 𝑧𝑆𝑦)}) | |
5 | 4 | elixx1 12397 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ (𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
6 | 3anass 1081 | . . . . 5 ⊢ ((𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵) ↔ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) | |
7 | ibar 526 | . . . . 5 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵)) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))))) | |
8 | 6, 7 | syl5bb 272 | . . . 4 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → ((𝐶 ∈ ℝ* ∧ 𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))))) |
9 | 5, 8 | bitrd 268 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))))) |
10 | 4 | ixxf 12398 | . . . . . . 7 ⊢ 𝑂:(ℝ* × ℝ*)⟶𝒫 ℝ* |
11 | 10 | fdmi 6213 | . . . . . 6 ⊢ dom 𝑂 = (ℝ* × ℝ*) |
12 | 11 | ndmov 6984 | . . . . 5 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴𝑂𝐵) = ∅) |
13 | 12 | eleq2d 2825 | . . . 4 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ 𝐶 ∈ ∅)) |
14 | noel 4062 | . . . . . 6 ⊢ ¬ 𝐶 ∈ ∅ | |
15 | 14 | pm2.21i 116 | . . . . 5 ⊢ (𝐶 ∈ ∅ → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) |
16 | simpl 474 | . . . . 5 ⊢ (((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) → (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*)) | |
17 | 15, 16 | pm5.21ni 366 | . . . 4 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ ∅ ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))))) |
18 | 13, 17 | bitrd 268 | . . 3 ⊢ (¬ (𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))))) |
19 | 9, 18 | pm2.61i 176 | . 2 ⊢ (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) ∧ (𝐶 ∈ ℝ* ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵)))) |
20 | 1, 3, 19 | 3bitr4ri 293 | 1 ⊢ (𝐶 ∈ (𝐴𝑂𝐵) ↔ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ*) ∧ (𝐴𝑅𝐶 ∧ 𝐶𝑆𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 {crab 3054 ∅c0 4058 𝒫 cpw 4302 class class class wbr 4804 × cxp 5264 (class class class)co 6814 ↦ cmpt2 6816 ℝ*cxr 10285 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-fv 6057 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-1st 7334 df-2nd 7335 df-xr 10290 |
This theorem is referenced by: ixxss1 12406 ixxss2 12407 ixxss12 12408 elioo3g 12417 elicore 12439 iccss2 12457 iccssico2 12460 xrtgioo 22830 ftc1anclem7 33822 ftc1anclem8 33823 ftc1anc 33824 eliocre 40255 lbioc 40260 |
Copyright terms: Public domain | W3C validator |