Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliunxp2 Structured version   Visualization version   GIF version

Theorem eliunxp2 42437
Description: Membership in a union of Cartesian products over its second component, analogous to eliunxp 5292. (Contributed by AV, 30-Mar-2019.)
Assertion
Ref Expression
eliunxp2 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝐴(𝑦)   𝐵(𝑦)

Proof of Theorem eliunxp2
StepHypRef Expression
1 relxp 5160 . . . . . . . 8 Rel (𝐴 × {𝑦})
21rgenw 2953 . . . . . . 7 𝑦𝐵 Rel (𝐴 × {𝑦})
3 reliun 5272 . . . . . . 7 (Rel 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∀𝑦𝐵 Rel (𝐴 × {𝑦}))
42, 3mpbir 221 . . . . . 6 Rel 𝑦𝐵 (𝐴 × {𝑦})
5 elrel 5256 . . . . . 6 ((Rel 𝑦𝐵 (𝐴 × {𝑦}) ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
64, 5mpan 706 . . . . 5 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
7 excom 2082 . . . . 5 (∃𝑦𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
86, 7sylibr 224 . . . 4 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) → ∃𝑦𝑥 𝐶 = ⟨𝑥, 𝑦⟩)
98pm4.71ri 666 . . 3 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ (∃𝑦𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})))
10 nfiu1 4582 . . . . 5 𝑦 𝑦𝐵 (𝐴 × {𝑦})
1110nfel2 2810 . . . 4 𝑦 𝐶 𝑦𝐵 (𝐴 × {𝑦})
121119.41 2141 . . 3 (∃𝑦(∃𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ (∃𝑦𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})))
13 19.41v 1917 . . . . 5 (∃𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ (∃𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})))
14 eleq1 2718 . . . . . . . 8 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦})))
15 opeliun2xp 42436 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑦𝐵𝑥𝐴))
16 ancom 465 . . . . . . . . 9 ((𝑦𝐵𝑥𝐴) ↔ (𝑥𝐴𝑦𝐵))
1715, 16bitri 264 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑥𝐴𝑦𝐵))
1814, 17syl6bb 276 . . . . . . 7 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ (𝑥𝐴𝑦𝐵)))
1918pm5.32i 670 . . . . . 6 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2019exbii 1814 . . . . 5 (∃𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ ∃𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2113, 20bitr3i 266 . . . 4 ((∃𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ ∃𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2221exbii 1814 . . 3 (∃𝑦(∃𝑥 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑦𝐵 (𝐴 × {𝑦})) ↔ ∃𝑦𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
239, 12, 223bitr2i 288 . 2 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∃𝑦𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
24 excom 2082 . 2 (∃𝑦𝑥(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
2523, 24bitri 264 1 (𝐶 𝑦𝐵 (𝐴 × {𝑦}) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wral 2941  {csn 4210  cop 4216   ciun 4552   × cxp 5141  Rel wrel 5148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-iun 4554  df-opab 4746  df-xp 5149  df-rel 5150
This theorem is referenced by:  mpt2mptx2  42438
  Copyright terms: Public domain W3C validator