Mathbox for Richard Penner < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliunov2 Structured version   Visualization version   GIF version

Theorem eliunov2 38473
 Description: Membership in the indexed union over operator values where the index varies the second input is equivalent to the existence of at least one index such that the element is a member of that operator value. Generalized from dfrtrclrec2 13996. (Contributed by RP, 1-Jun-2020.)
Hypothesis
Ref Expression
mptiunov2.def 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
Assertion
Ref Expression
eliunov2 ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
Distinct variable groups:   𝑛,𝑟,𝐶,𝑁,   𝑅,𝑛,𝑟   𝑛,𝑋
Allowed substitution hints:   𝑈(𝑛,𝑟)   𝑉(𝑛,𝑟)   𝑋(𝑟)

Proof of Theorem eliunov2
StepHypRef Expression
1 elex 3352 . . . . 5 (𝑅𝑈𝑅 ∈ V)
21adantr 472 . . . 4 ((𝑅𝑈𝑁𝑉) → 𝑅 ∈ V)
3 simpr 479 . . . . 5 ((𝑅𝑈𝑁𝑉) → 𝑁𝑉)
4 ovex 6841 . . . . . 6 (𝑅 𝑛) ∈ V
54rgenw 3062 . . . . 5 𝑛𝑁 (𝑅 𝑛) ∈ V
6 iunexg 7308 . . . . 5 ((𝑁𝑉 ∧ ∀𝑛𝑁 (𝑅 𝑛) ∈ V) → 𝑛𝑁 (𝑅 𝑛) ∈ V)
73, 5, 6sylancl 697 . . . 4 ((𝑅𝑈𝑁𝑉) → 𝑛𝑁 (𝑅 𝑛) ∈ V)
8 oveq1 6820 . . . . . 6 (𝑟 = 𝑅 → (𝑟 𝑛) = (𝑅 𝑛))
98iuneq2d 4699 . . . . 5 (𝑟 = 𝑅 𝑛𝑁 (𝑟 𝑛) = 𝑛𝑁 (𝑅 𝑛))
10 eqid 2760 . . . . 5 (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
119, 10fvmptg 6442 . . . 4 ((𝑅 ∈ V ∧ 𝑛𝑁 (𝑅 𝑛) ∈ V) → ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛))
122, 7, 11syl2anc 696 . . 3 ((𝑅𝑈𝑁𝑉) → ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛))
13 eleq2 2828 . . . 4 (((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ 𝑋 𝑛𝑁 (𝑅 𝑛)))
14 eliun 4676 . . . . 5 (𝑋 𝑛𝑁 (𝑅 𝑛) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))
1514a1i 11 . . . 4 ((𝑅𝑈𝑁𝑉) → (𝑋 𝑛𝑁 (𝑅 𝑛) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
1613, 15sylan9bb 738 . . 3 ((((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) = 𝑛𝑁 (𝑅 𝑛) ∧ (𝑅𝑈𝑁𝑉)) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
1712, 16mpancom 706 . 2 ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
18 mptiunov2.def . . 3 𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))
19 fveq1 6351 . . . . . 6 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → (𝐶𝑅) = ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅))
2019eleq2d 2825 . . . . 5 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → (𝑋 ∈ (𝐶𝑅) ↔ 𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅)))
2120bibi1d 332 . . . 4 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → ((𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)) ↔ (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))))
2221imbi2d 329 . . 3 (𝐶 = (𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛)) → (((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))) ↔ ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))))
2318, 22ax-mp 5 . 2 (((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))) ↔ ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ ((𝑟 ∈ V ↦ 𝑛𝑁 (𝑟 𝑛))‘𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛))))
2417, 23mpbir 221 1 ((𝑅𝑈𝑁𝑉) → (𝑋 ∈ (𝐶𝑅) ↔ ∃𝑛𝑁 𝑋 ∈ (𝑅 𝑛)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 196   ∧ wa 383   = wceq 1632   ∈ wcel 2139  ∀wral 3050  ∃wrex 3051  Vcvv 3340  ∪ ciun 4672   ↦ cmpt 4881  ‘cfv 6049  (class class class)co 6813 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pr 5055  ax-un 7114 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-ov 6816 This theorem is referenced by:  eltrclrec  38474  elrtrclrec  38475  briunov2  38476  eliunov2uz  38493  ov2ssiunov2  38494
 Copyright terms: Public domain W3C validator