MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elioomnf Structured version   Visualization version   GIF version

Theorem elioomnf 12432
Description: Membership in an unbounded interval of extended reals. (Contributed by Mario Carneiro, 18-Jun-2014.)
Assertion
Ref Expression
elioomnf (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴)))

Proof of Theorem elioomnf
StepHypRef Expression
1 mnfxr 10259 . . 3 -∞ ∈ ℝ*
2 elioo2 12380 . . 3 ((-∞ ∈ ℝ*𝐴 ∈ ℝ*) → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ -∞ < 𝐵𝐵 < 𝐴)))
31, 2mpan 708 . 2 (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ -∞ < 𝐵𝐵 < 𝐴)))
4 an32 874 . . 3 (((𝐵 ∈ ℝ ∧ -∞ < 𝐵) ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ∧ -∞ < 𝐵))
5 df-3an 1074 . . 3 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ -∞ < 𝐵) ∧ 𝐵 < 𝐴))
6 mnflt 12121 . . . . 5 (𝐵 ∈ ℝ → -∞ < 𝐵)
76adantr 472 . . . 4 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) → -∞ < 𝐵)
87pm4.71i 667 . . 3 ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ↔ ((𝐵 ∈ ℝ ∧ 𝐵 < 𝐴) ∧ -∞ < 𝐵))
94, 5, 83bitr4i 292 . 2 ((𝐵 ∈ ℝ ∧ -∞ < 𝐵𝐵 < 𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴))
103, 9syl6bb 276 1 (𝐴 ∈ ℝ* → (𝐵 ∈ (-∞(,)𝐴) ↔ (𝐵 ∈ ℝ ∧ 𝐵 < 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072  wcel 2127   class class class wbr 4792  (class class class)co 6801  cr 10098  -∞cmnf 10235  *cxr 10236   < clt 10237  (,)cioo 12339
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1859  ax-4 1874  ax-5 1976  ax-6 2042  ax-7 2078  ax-8 2129  ax-9 2136  ax-10 2156  ax-11 2171  ax-12 2184  ax-13 2379  ax-ext 2728  ax-sep 4921  ax-nul 4929  ax-pow 4980  ax-pr 5043  ax-un 7102  ax-cnex 10155  ax-resscn 10156  ax-pre-lttri 10173  ax-pre-lttrn 10174
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1623  df-ex 1842  df-nf 1847  df-sb 2035  df-eu 2599  df-mo 2600  df-clab 2735  df-cleq 2741  df-clel 2744  df-nfc 2879  df-ne 2921  df-nel 3024  df-ral 3043  df-rex 3044  df-rab 3047  df-v 3330  df-sbc 3565  df-csb 3663  df-dif 3706  df-un 3708  df-in 3710  df-ss 3717  df-nul 4047  df-if 4219  df-pw 4292  df-sn 4310  df-pr 4312  df-op 4316  df-uni 4577  df-iun 4662  df-br 4793  df-opab 4853  df-mpt 4870  df-id 5162  df-po 5175  df-so 5176  df-xp 5260  df-rel 5261  df-cnv 5262  df-co 5263  df-dm 5264  df-rn 5265  df-res 5266  df-ima 5267  df-iota 6000  df-fun 6039  df-fn 6040  df-f 6041  df-f1 6042  df-fo 6043  df-f1o 6044  df-fv 6045  df-ov 6804  df-oprab 6805  df-mpt2 6806  df-1st 7321  df-2nd 7322  df-er 7899  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10239  df-mnf 10240  df-xr 10241  df-ltxr 10242  df-le 10243  df-ioo 12343
This theorem is referenced by:  bndth  22929  mbfmulc2lem  23584  mbfposr  23589  ismbf3d  23591  mbfi1fseqlem4  23655  itg2monolem1  23687  dvne0  23944  mbfposadd  33739  itg2addnclem2  33744  iblabsnclem  33755  ftc1anclem1  33767  ftc1anclem6  33772  rfcnpre2  39658
  Copyright terms: Public domain W3C validator