![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elioo2 | Structured version Visualization version GIF version |
Description: Membership in an open interval of extended reals. (Contributed by NM, 6-Feb-2007.) |
Ref | Expression |
---|---|
elioo2 | ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iooval2 12401 | . . 3 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐴(,)𝐵) = {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)}) | |
2 | 1 | eleq2d 2825 | . 2 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ 𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)})) |
3 | breq2 4808 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐴 < 𝑥 ↔ 𝐴 < 𝐶)) | |
4 | breq1 4807 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝑥 < 𝐵 ↔ 𝐶 < 𝐵)) | |
5 | 3, 4 | anbi12d 749 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐴 < 𝑥 ∧ 𝑥 < 𝐵) ↔ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
6 | 5 | elrab 3504 | . . 3 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
7 | 3anass 1081 | . . 3 ⊢ ((𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵) ↔ (𝐶 ∈ ℝ ∧ (𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) | |
8 | 6, 7 | bitr4i 267 | . 2 ⊢ (𝐶 ∈ {𝑥 ∈ ℝ ∣ (𝐴 < 𝑥 ∧ 𝑥 < 𝐵)} ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
9 | 2, 8 | syl6bb 276 | 1 ⊢ ((𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 {crab 3054 class class class wbr 4804 (class class class)co 6813 ℝcr 10127 ℝ*cxr 10265 < clt 10266 (,)cioo 12368 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-pre-lttri 10202 ax-pre-lttrn 10203 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-op 4328 df-uni 4589 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-id 5174 df-po 5187 df-so 5188 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-1st 7333 df-2nd 7334 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-ioo 12372 |
This theorem is referenced by: eliooord 12426 elioopnf 12460 elioomnf 12461 difreicc 12497 xov1plusxeqvd 12511 tanhbnd 15090 bl2ioo 22796 xrtgioo 22810 zcld 22817 iccntr 22825 icccmplem2 22827 reconnlem1 22830 reconnlem2 22831 icoopnst 22939 iocopnst 22940 ivthlem3 23422 ovolicc2lem1 23485 ovolicc2lem5 23489 ioombl1lem4 23529 mbfmax 23615 itg2monolem1 23716 itg2monolem3 23718 dvferm1lem 23946 dvferm2lem 23948 dvlip2 23957 dvivthlem1 23970 lhop1lem 23975 lhop 23978 dvcnvrelem1 23979 dvcnvre 23981 itgsubst 24011 sincosq1sgn 24449 sincosq2sgn 24450 sincosq3sgn 24451 sincosq4sgn 24452 coseq00topi 24453 tanabsge 24457 sinq12gt0 24458 sinq12ge0 24459 cosq14gt0 24461 sincos6thpi 24466 sineq0 24472 cosordlem 24476 tanord1 24482 tanord 24483 argregt0 24555 argimgt0 24557 argimlt0 24558 dvloglem 24593 logf1o2 24595 efopnlem2 24602 asinsinlem 24817 acoscos 24819 atanlogsublem 24841 atantan 24849 atanbndlem 24851 atanbnd 24852 atan1 24854 scvxcvx 24911 basellem1 25006 pntibndlem1 25477 pntibnd 25481 pntlemc 25483 padicabvf 25519 padicabvcxp 25520 dfrp2 29841 cnre2csqlem 30265 ivthALT 32636 iooelexlt 33521 itg2gt0cn 33778 iblabsnclem 33786 dvasin 33809 areacirclem1 33813 areacirc 33818 cvgdvgrat 39014 radcnvrat 39015 sineq0ALT 39672 ioogtlb 40220 eliood 40223 eliooshift 40232 iooltub 40238 limciccioolb 40356 limcicciooub 40372 cncfioobdlem 40612 ditgeqiooicc 40679 dirkercncflem1 40823 dirkercncflem4 40826 fourierdlem10 40837 fourierdlem32 40859 fourierdlem62 40888 fourierdlem81 40907 fourierdlem82 40908 fourierdlem93 40919 fourierdlem104 40930 fourierdlem111 40937 |
Copyright terms: Public domain | W3C validator |