MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elinti Structured version   Visualization version   GIF version

Theorem elinti 4637
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) (Proof shortened by Andrew Salmon, 9-Jul-2011.)
Assertion
Ref Expression
elinti (𝐴 𝐵 → (𝐶𝐵𝐴𝐶))

Proof of Theorem elinti
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 elintg 4635 . . 3 (𝐴 𝐵 → (𝐴 𝐵 ↔ ∀𝑥𝐵 𝐴𝑥))
2 eleq2 2828 . . . 4 (𝑥 = 𝐶 → (𝐴𝑥𝐴𝐶))
32rspccv 3446 . . 3 (∀𝑥𝐵 𝐴𝑥 → (𝐶𝐵𝐴𝐶))
41, 3syl6bi 243 . 2 (𝐴 𝐵 → (𝐴 𝐵 → (𝐶𝐵𝐴𝐶)))
54pm2.43i 52 1 (𝐴 𝐵 → (𝐶𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2139  wral 3050   cint 4627
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ral 3055  df-v 3342  df-int 4628
This theorem is referenced by:  inttsk  9808  subgint  17839  subrgint  19024  lssintcl  19186  ufinffr  21954  shintcli  28518  insiga  30530  intsal  41069
  Copyright terms: Public domain W3C validator