![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elint2 | Structured version Visualization version GIF version |
Description: Membership in class intersection. (Contributed by NM, 14-Oct-1999.) |
Ref | Expression |
---|---|
elint2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
elint2 | ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elint2.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | 1 | elint 4625 | . 2 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) |
3 | df-ral 3047 | . 2 ⊢ (∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥 ↔ ∀𝑥(𝑥 ∈ 𝐵 → 𝐴 ∈ 𝑥)) | |
4 | 2, 3 | bitr4i 267 | 1 ⊢ (𝐴 ∈ ∩ 𝐵 ↔ ∀𝑥 ∈ 𝐵 𝐴 ∈ 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1622 ∈ wcel 2131 ∀wral 3042 Vcvv 3332 ∩ cint 4619 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ral 3047 df-v 3334 df-int 4620 |
This theorem is referenced by: elintgOLD 4628 int0 4634 ssint 4637 intssuni 4643 iinuni 4753 trint 4912 trintssOLD 4914 onint 7152 intwun 9741 inttsk 9780 intgru 9820 subgint 17811 subrgint 18996 lssintcl 19158 toponmre 21091 alexsubALTlem3 22046 shintcli 28489 chintcli 28491 fin2so 33701 intidl 34133 mzpincl 37791 elimaint 38434 elintima 38439 intsal 41043 salgencntex 41056 |
Copyright terms: Public domain | W3C validator |