![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > eliniseg2 | Structured version Visualization version GIF version |
Description: Eliminate the class existence constraint in eliniseg 5635. (Contributed by Mario Carneiro, 5-Dec-2014.) (Revised by Mario Carneiro, 17-Nov-2015.) |
Ref | Expression |
---|---|
eliniseg2 | ⊢ (Rel 𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 5644 | . . 3 ⊢ Rel ◡𝐴 | |
2 | elrelimasn 5630 | . . 3 ⊢ (Rel ◡𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐵◡𝐴𝐶)) | |
3 | 1, 2 | ax-mp 5 | . 2 ⊢ (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐵◡𝐴𝐶) |
4 | relbrcnvg 5645 | . 2 ⊢ (Rel 𝐴 → (𝐵◡𝐴𝐶 ↔ 𝐶𝐴𝐵)) | |
5 | 3, 4 | syl5bb 272 | 1 ⊢ (Rel 𝐴 → (𝐶 ∈ (◡𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∈ wcel 2144 {csn 4314 class class class wbr 4784 ◡ccnv 5248 “ cima 5252 Rel wrel 5254 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pr 5034 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-sn 4315 df-pr 4317 df-op 4321 df-br 4785 df-opab 4845 df-xp 5255 df-rel 5256 df-cnv 5257 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 |
This theorem is referenced by: isunit 18864 frege133d 38576 |
Copyright terms: Public domain | W3C validator |