MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  eliniseg Structured version   Visualization version   GIF version

Theorem eliniseg 5635
Description: Membership in an initial segment. The idiom (𝐴 “ {𝐵}), meaning {𝑥𝑥𝐴𝐵}, is used to specify an initial segment in (for example) Definition 6.21 of [TakeutiZaring] p. 30. (Contributed by NM, 28-Apr-2004.) (Proof shortened by Andrew Salmon, 27-Aug-2011.)
Hypothesis
Ref Expression
eliniseg.1 𝐶 ∈ V
Assertion
Ref Expression
eliniseg (𝐵𝑉 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))

Proof of Theorem eliniseg
StepHypRef Expression
1 eliniseg.1 . 2 𝐶 ∈ V
2 elimasng 5632 . . . 4 ((𝐵𝑉𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴))
3 df-br 4785 . . . 4 (𝐵𝐴𝐶 ↔ ⟨𝐵, 𝐶⟩ ∈ 𝐴)
42, 3syl6bbr 278 . . 3 ((𝐵𝑉𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐵𝐴𝐶))
5 brcnvg 5441 . . 3 ((𝐵𝑉𝐶 ∈ V) → (𝐵𝐴𝐶𝐶𝐴𝐵))
64, 5bitrd 268 . 2 ((𝐵𝑉𝐶 ∈ V) → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
71, 6mpan2 663 1 (𝐵𝑉 → (𝐶 ∈ (𝐴 “ {𝐵}) ↔ 𝐶𝐴𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wcel 2144  Vcvv 3349  {csn 4314  cop 4320   class class class wbr 4784  ccnv 5248  cima 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912  ax-nul 4920  ax-pr 5034
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rex 3066  df-rab 3069  df-v 3351  df-sbc 3586  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-sn 4315  df-pr 4317  df-op 4321  df-br 4785  df-opab 4845  df-xp 5255  df-cnv 5257  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262
This theorem is referenced by:  epini  5636  iniseg  5637  dfco2a  5779  elpred  5836  isomin  6729  isoini  6730  fnse  7444  infxpenlem  9035  fpwwe2lem8  9660  fpwwe2lem12  9664  fpwwe2lem13  9665  fpwwe2  9666  canth4  9670  canthwelem  9673  pwfseqlem4  9685  fz1isolem  13446  itg1addlem4  23685  elnlfn  29121  pw2f1ocnv  38123
  Copyright terms: Public domain W3C validator