Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elinintrab Structured version   Visualization version   GIF version

Theorem elinintrab 38402
Description: Two ways of saying a set is an element of the intersection of a class with the intersection of a class. (Contributed by RP, 14-Aug-2020.)
Assertion
Ref Expression
elinintrab (𝐴𝑉 → (𝐴 {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥))))
Distinct variable groups:   𝜑,𝑤   𝑥,𝑤,𝐴   𝑤,𝐵,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝑉(𝑥,𝑤)

Proof of Theorem elinintrab
StepHypRef Expression
1 vex 3352 . . . 4 𝑥 ∈ V
21inex2 4931 . . 3 (𝐵𝑥) ∈ V
3 inss1 3979 . . 3 (𝐵𝑥) ⊆ 𝐵
42, 3elmapintrab 38401 . 2 (𝐴𝑉 → (𝐴 {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴 ∈ (𝐵𝑥)))))
5 elin 3945 . . . . . . . 8 (𝐴 ∈ (𝐵𝑥) ↔ (𝐴𝐵𝐴𝑥))
65imbi2i 325 . . . . . . 7 ((𝜑𝐴 ∈ (𝐵𝑥)) ↔ (𝜑 → (𝐴𝐵𝐴𝑥)))
7 jcab 501 . . . . . . 7 ((𝜑 → (𝐴𝐵𝐴𝑥)) ↔ ((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)))
86, 7bitri 264 . . . . . 6 ((𝜑𝐴 ∈ (𝐵𝑥)) ↔ ((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)))
98albii 1894 . . . . 5 (∀𝑥(𝜑𝐴 ∈ (𝐵𝑥)) ↔ ∀𝑥((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)))
10 19.26 1948 . . . . . 6 (∀𝑥((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)) ↔ (∀𝑥(𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
11 19.23v 2022 . . . . . . 7 (∀𝑥(𝜑𝐴𝐵) ↔ (∃𝑥𝜑𝐴𝐵))
1211anbi1i 602 . . . . . 6 ((∀𝑥(𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
1310, 12bitri 264 . . . . 5 (∀𝑥((𝜑𝐴𝐵) ∧ (𝜑𝐴𝑥)) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
149, 13bitri 264 . . . 4 (∀𝑥(𝜑𝐴 ∈ (𝐵𝑥)) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
1514anbi2i 601 . . 3 (((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴 ∈ (𝐵𝑥))) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥))))
16 anabs5 634 . . 3 (((∃𝑥𝜑𝐴𝐵) ∧ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥))) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
1715, 16bitri 264 . 2 (((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴 ∈ (𝐵𝑥))) ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥)))
184, 17syl6bb 276 1 (𝐴𝑉 → (𝐴 {𝑤 ∈ 𝒫 𝐵 ∣ ∃𝑥(𝑤 = (𝐵𝑥) ∧ 𝜑)} ↔ ((∃𝑥𝜑𝐴𝐵) ∧ ∀𝑥(𝜑𝐴𝑥))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wal 1628   = wceq 1630  wex 1851  wcel 2144  {crab 3064  cin 3720  𝒫 cpw 4295   cint 4609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-sep 4912
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ral 3065  df-rab 3069  df-v 3351  df-in 3728  df-ss 3735  df-pw 4297  df-int 4610
This theorem is referenced by:  inintabss  38403  inintabd  38404
  Copyright terms: Public domain W3C validator