![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elin2 | Structured version Visualization version GIF version |
Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.) |
Ref | Expression |
---|---|
elin2.x | ⊢ 𝑋 = (𝐵 ∩ 𝐶) |
Ref | Expression |
---|---|
elin2 | ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elin2.x | . . 3 ⊢ 𝑋 = (𝐵 ∩ 𝐶) | |
2 | 1 | eleq2i 2842 | . 2 ⊢ (𝐴 ∈ 𝑋 ↔ 𝐴 ∈ (𝐵 ∩ 𝐶)) |
3 | elin 3947 | . 2 ⊢ (𝐴 ∈ (𝐵 ∩ 𝐶) ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) | |
4 | 2, 3 | bitri 264 | 1 ⊢ (𝐴 ∈ 𝑋 ↔ (𝐴 ∈ 𝐵 ∧ 𝐴 ∈ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ∩ cin 3722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-v 3353 df-in 3730 |
This theorem is referenced by: elin3 3955 elpredim 5834 elpred 5835 elpredg 5836 fnres 6146 funfvima 6638 fnwelem 7447 ressuppssdif 7471 fz1isolem 13447 isabl 18404 isfld 18966 2idlcpbl 19449 qus1 19450 qusrhm 19452 isidom 19519 lmres 21325 isnvc 22719 cvslvec 23144 cvsclm 23145 iscvs 23146 ishl 23377 ply1pid 24159 rplogsum 25437 iscusgr 26549 isphg 28012 ishlo 28083 hhsscms 28476 mayete3i 28927 isogrp 30042 isofld 30142 sltres 32152 caures 33888 iscrngo 34127 fldcrng 34135 isdmn 34185 opelresALTV 34374 isolat 35021 srhmsubclem1 42598 srhmsubc 42601 srhmsubcALTV 42619 |
Copyright terms: Public domain | W3C validator |