MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elin2 Structured version   Visualization version   GIF version

Theorem elin2 3952
Description: Membership in a class defined as an intersection. (Contributed by Stefan O'Rear, 29-Mar-2015.)
Hypothesis
Ref Expression
elin2.x 𝑋 = (𝐵𝐶)
Assertion
Ref Expression
elin2 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))

Proof of Theorem elin2
StepHypRef Expression
1 elin2.x . . 3 𝑋 = (𝐵𝐶)
21eleq2i 2842 . 2 (𝐴𝑋𝐴 ∈ (𝐵𝐶))
3 elin 3947 . 2 (𝐴 ∈ (𝐵𝐶) ↔ (𝐴𝐵𝐴𝐶))
42, 3bitri 264 1 (𝐴𝑋 ↔ (𝐴𝐵𝐴𝐶))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 382   = wceq 1631  wcel 2145  cin 3722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-v 3353  df-in 3730
This theorem is referenced by:  elin3  3955  elpredim  5834  elpred  5835  elpredg  5836  fnres  6146  funfvima  6638  fnwelem  7447  ressuppssdif  7471  fz1isolem  13447  isabl  18404  isfld  18966  2idlcpbl  19449  qus1  19450  qusrhm  19452  isidom  19519  lmres  21325  isnvc  22719  cvslvec  23144  cvsclm  23145  iscvs  23146  ishl  23377  ply1pid  24159  rplogsum  25437  iscusgr  26549  isphg  28012  ishlo  28083  hhsscms  28476  mayete3i  28927  isogrp  30042  isofld  30142  sltres  32152  caures  33888  iscrngo  34127  fldcrng  34135  isdmn  34185  opelresALTV  34374  isolat  35021  srhmsubclem1  42598  srhmsubc  42601  srhmsubcALTV  42619
  Copyright terms: Public domain W3C validator