Mathbox for BJ < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eliminable2c Structured version   Visualization version   GIF version

Theorem eliminable2c 33177
 Description: A theorem used to prove the base case of the Eliminability Theorem (see section comment). (Contributed by BJ, 19-Oct-2019.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
eliminable2c ({𝑥𝜑} = {𝑦𝜓} ↔ ∀𝑧(𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜓}))
Distinct variable groups:   𝑥,𝑧   𝑦,𝑧   𝜑,𝑧   𝜓,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)

Proof of Theorem eliminable2c
StepHypRef Expression
1 dfcleq 2765 1 ({𝑥𝜑} = {𝑦𝜓} ↔ ∀𝑧(𝑧 ∈ {𝑥𝜑} ↔ 𝑧 ∈ {𝑦𝜓}))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196  ∀wal 1629   = wceq 1631   ∈ wcel 2145  {cab 2757 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-ext 2751 This theorem depends on definitions:  df-bi 197  df-an 383  df-ex 1853  df-cleq 2764 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator