Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elima4 Structured version   Visualization version   GIF version

Theorem elima4 31803
Description: Quantifier-free expression saying that a class is a member of an image. (Contributed by Scott Fenton, 8-May-2018.)
Assertion
Ref Expression
elima4 (𝐴 ∈ (𝑅𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅)

Proof of Theorem elima4
Dummy variables 𝑥 𝑝 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 3243 . 2 (𝐴 ∈ (𝑅𝐵) → 𝐴 ∈ V)
2 xpeq2 5163 . . . . . . 7 ({𝐴} = ∅ → (𝐵 × {𝐴}) = (𝐵 × ∅))
3 xp0 5587 . . . . . . 7 (𝐵 × ∅) = ∅
42, 3syl6eq 2701 . . . . . 6 ({𝐴} = ∅ → (𝐵 × {𝐴}) = ∅)
54ineq2d 3847 . . . . 5 ({𝐴} = ∅ → (𝑅 ∩ (𝐵 × {𝐴})) = (𝑅 ∩ ∅))
6 in0 4001 . . . . 5 (𝑅 ∩ ∅) = ∅
75, 6syl6eq 2701 . . . 4 ({𝐴} = ∅ → (𝑅 ∩ (𝐵 × {𝐴})) = ∅)
87necon3i 2855 . . 3 ((𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅ → {𝐴} ≠ ∅)
9 snnzb 4286 . . 3 (𝐴 ∈ V ↔ {𝐴} ≠ ∅)
108, 9sylibr 224 . 2 ((𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅ → 𝐴 ∈ V)
11 eleq1 2718 . . 3 (𝑥 = 𝐴 → (𝑥 ∈ (𝑅𝐵) ↔ 𝐴 ∈ (𝑅𝐵)))
12 sneq 4220 . . . . . 6 (𝑥 = 𝐴 → {𝑥} = {𝐴})
1312xpeq2d 5173 . . . . 5 (𝑥 = 𝐴 → (𝐵 × {𝑥}) = (𝐵 × {𝐴}))
1413ineq2d 3847 . . . 4 (𝑥 = 𝐴 → (𝑅 ∩ (𝐵 × {𝑥})) = (𝑅 ∩ (𝐵 × {𝐴})))
1514neeq1d 2882 . . 3 (𝑥 = 𝐴 → ((𝑅 ∩ (𝐵 × {𝑥})) ≠ ∅ ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅))
16 elin 3829 . . . . . . 7 (𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})) ↔ (𝑝𝑅𝑝 ∈ (𝐵 × {𝑥})))
17 ancom 465 . . . . . . 7 ((𝑝𝑅𝑝 ∈ (𝐵 × {𝑥})) ↔ (𝑝 ∈ (𝐵 × {𝑥}) ∧ 𝑝𝑅))
18 elxp 5165 . . . . . . . 8 (𝑝 ∈ (𝐵 × {𝑥}) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})))
1918anbi1i 731 . . . . . . 7 ((𝑝 ∈ (𝐵 × {𝑥}) ∧ 𝑝𝑅) ↔ (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
2016, 17, 193bitri 286 . . . . . 6 (𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})) ↔ (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
2120exbii 1814 . . . . 5 (∃𝑝 𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})) ↔ ∃𝑝(∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
22 anass 682 . . . . . . . . 9 (((𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅) ↔ (𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)))
23222exbii 1815 . . . . . . . 8 (∃𝑦𝑧((𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅) ↔ ∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)))
24 19.41vv 1918 . . . . . . . 8 (∃𝑦𝑧((𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅) ↔ (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
2523, 24bitr3i 266 . . . . . . 7 (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ (∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
2625exbii 1814 . . . . . 6 (∃𝑝𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ∃𝑝(∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅))
27 exrot3 2085 . . . . . 6 (∃𝑝𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ∃𝑦𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)))
2826, 27bitr3i 266 . . . . 5 (∃𝑝(∃𝑦𝑧(𝑝 = ⟨𝑦, 𝑧⟩ ∧ (𝑦𝐵𝑧 ∈ {𝑥})) ∧ 𝑝𝑅) ↔ ∃𝑦𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)))
29 opex 4962 . . . . . . . . 9 𝑦, 𝑧⟩ ∈ V
30 eleq1 2718 . . . . . . . . . 10 (𝑝 = ⟨𝑦, 𝑧⟩ → (𝑝𝑅 ↔ ⟨𝑦, 𝑧⟩ ∈ 𝑅))
3130anbi2d 740 . . . . . . . . 9 (𝑝 = ⟨𝑦, 𝑧⟩ → (((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅) ↔ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
3229, 31ceqsexv 3273 . . . . . . . 8 (∃𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅))
3332exbii 1814 . . . . . . 7 (∃𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ∃𝑧((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅))
34 anass 682 . . . . . . . . 9 (((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅) ↔ (𝑦𝐵 ∧ (𝑧 ∈ {𝑥} ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
35 an12 855 . . . . . . . . 9 ((𝑦𝐵 ∧ (𝑧 ∈ {𝑥} ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)) ↔ (𝑧 ∈ {𝑥} ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
36 velsn 4226 . . . . . . . . . 10 (𝑧 ∈ {𝑥} ↔ 𝑧 = 𝑥)
3736anbi1i 731 . . . . . . . . 9 ((𝑧 ∈ {𝑥} ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)) ↔ (𝑧 = 𝑥 ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
3834, 35, 373bitri 286 . . . . . . . 8 (((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅) ↔ (𝑧 = 𝑥 ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
3938exbii 1814 . . . . . . 7 (∃𝑧((𝑦𝐵𝑧 ∈ {𝑥}) ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅) ↔ ∃𝑧(𝑧 = 𝑥 ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)))
40 vex 3234 . . . . . . . 8 𝑥 ∈ V
41 opeq2 4434 . . . . . . . . . 10 (𝑧 = 𝑥 → ⟨𝑦, 𝑧⟩ = ⟨𝑦, 𝑥⟩)
4241eleq1d 2715 . . . . . . . . 9 (𝑧 = 𝑥 → (⟨𝑦, 𝑧⟩ ∈ 𝑅 ↔ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
4342anbi2d 740 . . . . . . . 8 (𝑧 = 𝑥 → ((𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅) ↔ (𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅)))
4440, 43ceqsexv 3273 . . . . . . 7 (∃𝑧(𝑧 = 𝑥 ∧ (𝑦𝐵 ∧ ⟨𝑦, 𝑧⟩ ∈ 𝑅)) ↔ (𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
4533, 39, 443bitri 286 . . . . . 6 (∃𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ (𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
4645exbii 1814 . . . . 5 (∃𝑦𝑧𝑝(𝑝 = ⟨𝑦, 𝑧⟩ ∧ ((𝑦𝐵𝑧 ∈ {𝑥}) ∧ 𝑝𝑅)) ↔ ∃𝑦(𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
4721, 28, 463bitri 286 . . . 4 (∃𝑝 𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})) ↔ ∃𝑦(𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
48 n0 3964 . . . 4 ((𝑅 ∩ (𝐵 × {𝑥})) ≠ ∅ ↔ ∃𝑝 𝑝 ∈ (𝑅 ∩ (𝐵 × {𝑥})))
4940elima3 5508 . . . 4 (𝑥 ∈ (𝑅𝐵) ↔ ∃𝑦(𝑦𝐵 ∧ ⟨𝑦, 𝑥⟩ ∈ 𝑅))
5047, 48, 493bitr4ri 293 . . 3 (𝑥 ∈ (𝑅𝐵) ↔ (𝑅 ∩ (𝐵 × {𝑥})) ≠ ∅)
5111, 15, 50vtoclbg 3298 . 2 (𝐴 ∈ V → (𝐴 ∈ (𝑅𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅))
521, 10, 51pm5.21nii 367 1 (𝐴 ∈ (𝑅𝐵) ↔ (𝑅 ∩ (𝐵 × {𝐴})) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1523  wex 1744  wcel 2030  wne 2823  Vcvv 3231  cin 3606  c0 3948  {csn 4210  cop 4216   × cxp 5141  cima 5146
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-rel 5150  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator