Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  elima2 Structured version   Visualization version   GIF version

Theorem elima2 5507
 Description: Membership in an image. Theorem 34 of [Suppes] p. 65. (Contributed by NM, 11-Aug-2004.)
Hypothesis
Ref Expression
elima.1 𝐴 ∈ V
Assertion
Ref Expression
elima2 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶𝑥𝐵𝐴))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶

Proof of Theorem elima2
StepHypRef Expression
1 elima.1 . . 3 𝐴 ∈ V
21elima 5506 . 2 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥𝐶 𝑥𝐵𝐴)
3 df-rex 2947 . 2 (∃𝑥𝐶 𝑥𝐵𝐴 ↔ ∃𝑥(𝑥𝐶𝑥𝐵𝐴))
42, 3bitri 264 1 (𝐴 ∈ (𝐵𝐶) ↔ ∃𝑥(𝑥𝐶𝑥𝐵𝐴))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383  ∃wex 1744   ∈ wcel 2030  ∃wrex 2942  Vcvv 3231   class class class wbr 4685   “ cima 5146 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-sep 4814  ax-nul 4822  ax-pr 4936 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ral 2946  df-rex 2947  df-rab 2950  df-v 3233  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-sn 4211  df-pr 4213  df-op 4217  df-br 4686  df-opab 4746  df-xp 5149  df-cnv 5151  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156 This theorem is referenced by:  elima3  5508  dminss  5582  imainss  5583  imadif  6011  metcld2  23151  isch2  28208  dfdm5  31800  dfrn5  31801  brimg  32169
 Copyright terms: Public domain W3C validator